Abstract

We will prove some new dynamic inequalities of Opial's type on time scales. The results not only extend some results in the literature but also improve some of them. Some continuous and discrete inequalities are derived from the main results as special cases. The results can be applied on the study of distribution of generalized zeros of half-linear dynamic equations on time scales.

1. Introduction

In 1960 Opial [1] proved that if π‘₯ is absolutely continuous on [π‘Ž,𝑏] with π‘₯(π‘Ž)=π‘₯(𝑏)=0,thenξ€œπ‘π‘Ž||||||π‘₯π‘₯(𝑑)ξ…ž||(𝑑)𝑑𝑑≀(π‘βˆ’π‘Ž)4ξ€œπ‘π‘Ž||π‘₯ξ…ž||(𝑑)2𝑑𝑑.(1.1) Since the discovery of Opial’s inequality much work has been done and many papers which deal with new proofs, various generalizations, and extensions have appeared in the literature. In further simplifying the proof of the Opial inequality which had already been simplified by Olech [2], Beesack [3], Levinson [4], Mallows [5], and Pederson [6], it is proved that if π‘₯ is real absolutely continuous on (0,𝑏) and with π‘₯(0)=0, thenξ€œπ‘0||||||π‘₯π‘₯(𝑑)ξ…ž||𝑏(𝑑)𝑑𝑑≀2ξ€œπ‘0||π‘₯ξ…ž||(𝑑)2𝑑𝑑.(1.2) These inequalities and their extensions and generalizations are the most important and fundamental inequalities in the analysis of qualitative properties of solutions of different types of differential equations.

In recent decades the asymptotic behavior of difference equations and inequalities and their applications have been and still are receiving intensive attention. Many results concerning differential equations carry over quite easily to corresponding results for difference equations, while other results seem to be completely different from their continuous counterparts. So it is expected to see the discrete versions of the above inequalities. In fact, the discrete version of (1.1) which has been proved by Lasota [7] is given byβ„Žβˆ’1𝑖=1||π‘₯𝑖Δπ‘₯𝑖||≀12ξ‚ƒβ„Ž+12ξ‚„β„Žβˆ’1𝑖=1||Ξ”π‘₯𝑖||2,(1.3) where {π‘₯𝑖}0β‰€π‘–β‰€β„Ž is a sequence of real numbers with π‘₯0=π‘₯β„Ž=0 and [π‘₯] is the greatest integer function. The discrete version of (1.2) is proved in [8, Theorem 5.2.2] and states that for a real sequence {π‘₯𝑖}0β‰€π‘–β‰€β„Ž with π‘₯0=0, we haveβ„Žβˆ’1𝑖=1||π‘₯𝑖Δπ‘₯𝑖||β‰€β„Žβˆ’12β„Žβˆ’1𝑖=0||Ξ”π‘₯𝑖||2.(1.4) These difference inequalities and their generalizations are also important and fundamental in the analysis of qualitative properties of solutions of difference equations.

Since the continuous and discrete inequalities are important in the analysis of qualitative properties of solutions of differential and difference equations, we also believe that the unification of these inequalities on time scales, which leads to dynamic inequalities on time scales, will play the same effective act in the analysis of qualitative properties of solutions of dynamic equations. The study of dynamic inequalities on time scales helps avoid proving results twiceβ€”once for differential inequality and once again for difference inequality. The general idea is to prove a result for a dynamic inequality where the domain of the unknown function is a so-called time scale 𝕋. The cases when the time scale is equal to the reals or to the integers represent the classical theories of integral and of discrete inequalities. A cover story article in New Scientist [9] discusses several possible applications.

The three most popular examples of calculus on time scales are differential calculus, difference calculus, and quantum calculus (see Kac and Cheung [10]), that is, when 𝕋=ℝ, 𝕋=β„•, and 𝕋=π‘žβ„•0={π‘žπ‘‘βˆΆπ‘‘βˆˆβ„•0}, where π‘ž>1. For more details of time scale analysis we refer the reader to the two books by Bohner and Peterson [11, 12] which summarize and organize much of the time scale calculus.

For completeness, we recall the following concepts related to the notion of time scales. A time scale 𝕋 is an arbitrary nonempty closed subset of the real numbers ℝ. We assume throughout that 𝕋 has the topology that it inherits from the standard topology on the real numbers ℝ. The forward jump operator and the backward jump operator are defined by:𝜎(𝑑)∢=inf{π‘ βˆˆπ•‹βˆΆπ‘ >𝑑},𝜌(𝑑)∢=sup{π‘ βˆˆπ•‹βˆΆπ‘ <𝑑},(1.5) where supβˆ…=inf𝕋. A point π‘‘βˆˆπ•‹, is said to be left-dense if 𝜌(𝑑)=𝑑 and 𝑑>inf𝕋, is right-dense if 𝜎(𝑑)=𝑑, is left-scattered if 𝜌(𝑑)<𝑑, and is right-scattered if 𝜎(𝑑)>𝑑.

A function π‘”βˆΆπ•‹β†’β„ is said to be right-dense continuous (rd-continuous) provided 𝑔 is continuous at right-dense points and at left-dense points in 𝕋, left hand limits exist and are finite. The set of all such rd-continuous functions is denoted by 𝐢rd(𝕋).

The graininess function πœ‡ for a time scale 𝕋 is defined by πœ‡(𝑑)∢=𝜎(𝑑)βˆ’π‘‘, and for any function π‘“βˆΆπ•‹β†’β„ the notation π‘“πœŽ(𝑑) denotes 𝑓(𝜎(𝑑)). We will assume that sup𝕋=∞, and define the time scale interval [π‘Ž,𝑏]𝕋 by [π‘Ž,𝑏]π•‹βˆΆ=[π‘Ž,𝑏]βˆ©π•‹.

Definition 1.1. Fix π‘‘βˆˆπ•‹ and let π‘₯βˆΆπ•‹β†’β„. Define π‘₯Ξ”(𝑑) to be the number (if it exists) with the property that given any πœ–>0 there is a neighborhood π‘ˆ of 𝑑 with ||[]π‘₯(𝜎(𝑑))βˆ’π‘₯(𝑠)βˆ’π‘₯Ξ”([]||||||𝑑)𝜎(𝑑)βˆ’π‘ β‰€πœ–πœŽ(𝑑)βˆ’π‘ ,βˆ€π‘ βˆˆπ‘ˆ.(1.6) In this case, we say π‘₯Ξ”(𝑑) is the (delta) derivative of π‘₯ at 𝑑 and that π‘₯ is (delta) differentiable at 𝑑.

We will frequently use the results in the following theorem which is due to Hilger [13].

Theorem 1.2. Assume that π‘”βˆΆπ•‹β†’β„ and let π‘‘βˆˆπ•‹. (i)If 𝑔 is differentiable at 𝑑, then 𝑔 is continuous at 𝑑.(ii) If 𝑔 is continuous at 𝑑 and 𝑑 is right-scattered, then 𝑔 is differentiable at 𝑑 with𝑔Δ(𝑑)=𝑔(𝜎(𝑑))βˆ’π‘”(𝑑)πœ‡(𝑑).(1.7)(iii) If 𝑔 is differentiable and 𝑑 is right-dense, then𝑔Δ(𝑑)=lim𝑠→𝑑𝑔(𝑑)βˆ’π‘”(𝑠)π‘‘βˆ’π‘ .(1.8)(iv) If 𝑔 is differentiable at 𝑑, then 𝑔(𝜎(𝑑))=𝑔(𝑑)+πœ‡(𝑑)𝑔Δ(𝑑).

In this paper we will refer to the (delta) integral which we can define as follows.

Definition 1.3. If 𝐺Δ(𝑑)=𝑔(𝑑), then the Cauchy (delta) integral of 𝑔 is defined by ξ€œπ‘‘π‘Žπ‘”(𝑠)Ξ”π‘ βˆΆ=𝐺(𝑑)βˆ’πΊ(π‘Ž).(1.9)

It can be shown (see [11]) that if π‘”βˆˆπΆrd(𝕋), then the Cauchy integral ∫𝐺(𝑑)∢=𝑑𝑑0𝑔(𝑠)Δ𝑠 exists, 𝑑0βˆˆπ•‹, and satisfies 𝐺Δ(𝑑)=𝑔(𝑑), π‘‘βˆˆπ•‹. An infinite integral is defined asξ€œβˆžπ‘Žπ‘“(𝑑)Δ𝑑=limπ‘β†’βˆžξ€œπ‘π‘Žπ‘“(𝑑)Δ𝑑,(1.10) and the integration on discrete time scales is defined byξ€œπ‘π‘Žξ“π‘“(𝑑)Δ𝑑=[π‘‘βˆˆπ‘Ž,𝑏)πœ‡(𝑑)𝑓(𝑑).(1.11) However, the study of dynamic inequalities of the Opial types on time scales has been started by Bohner and KaymakΓ§alan [14] in 2001, only recently received a lot of attention and few papers have been written, see [14–17] and the references cited therein. For contributions of different types of inequalities on time scales, we refer also the reader to the papers [18–22] and the references cited therein. In the following, we recall some of the related results that have been established for dynamic inequalities on time scales that serve and motivate the contents of this paper.

In [14] the authors extended the inequality (1.1) on time scales and proved that if π‘₯∢[0,𝑏]βˆ©π•‹β†’β„ is delta differentiable with π‘₯(0)=0, thenξ€œβ„Ž0||π‘₯(𝑑)+π‘₯𝜎||||π‘₯(𝑑)Ξ”||ξ€œ(𝑑)Ξ”π‘‘β‰€β„Žβ„Ž0||π‘₯Ξ”||(𝑑)2Δ𝑑.(1.12) Also in [14] the authors proved that if π‘Ÿ and π‘ž are positive rd-continuous functions on ∫[0,𝑏],π‘π‘Ž(Δ𝑑/π‘Ÿ(𝑑))<∞,   π‘ž nonincreasing, and π‘₯∢[0,𝑏]βˆ©π•‹β†’β„ is delta differentiable with π‘₯(0)=0, thenξ€œπ‘0π‘žπœŽ||(𝑑)(π‘₯(𝑑)+π‘₯𝜎(𝑑))π‘₯Ξ”||ξ€œ(𝑑)Δ𝑑≀𝑏0Ξ”π‘‘ξ€œπ‘Ÿ(𝑑)𝑏0||π‘₯π‘Ÿ(𝑑)π‘ž(𝑑)Ξ”||(𝑑)2Δ𝑑.(1.13) Karpuz et al. [15] proved an inequality similar to inequality (1.13) replaced π‘žπœŽ(𝑑) by π‘ž(𝑑) of the formξ€œπ‘0||π‘ž(𝑑)(π‘₯(𝑑)+π‘₯𝜎(𝑑))π‘₯Ξ”||(𝑑)Ξ”π‘‘β‰€πΎπ‘žξ€œ(π‘Ž,𝑏)𝑏0||π‘₯Ξ”||(𝑑)2Δ𝑑,(1.14) where π‘ž is a positive rd-continuous function on [0,𝑏], and π‘₯∢[0,𝑏]βˆ©π•‹β†’β„ is delta differentiable with π‘₯(0)=0 andπΎπ‘žξ‚΅2ξ€œ(π‘Ž,𝑏)=π‘π‘Žπ‘ž2ξ‚Ά(𝑒)(𝜎(𝑒)βˆ’π‘Ž)Δ𝑒1/2.(1.15) Wong et al. [16] and Sirvastava et al. [17] proved that if π‘Ÿ is a positive rd-continuous function on [π‘Ž,𝑏], we haveξ€œπ‘π‘Ž||||π‘Ÿ(𝑑)π‘₯(𝑑)𝑝||π‘₯Ξ”||(𝑑)π‘žπ‘žΞ”π‘‘β‰€π‘+π‘ž(π‘βˆ’π‘Ž)π‘ξ€œπ‘π‘Ž||π‘₯π‘Ÿ(𝑑)Ξ”||(𝑑)𝑝+π‘žΞ”π‘‘,(1.16) where π‘₯∢[0,𝑏]βˆ©π•‹β†’β„ is delta differentiable with π‘₯(π‘Ž)=0.

Following this trend, to develop the qualitative theory of dynamic inequalities on time scales, we will prove some new inequalities of Opial’s type. Some special cases on continuous and discrete spaces are derived and compared by previous results. The main results in this paper can be considered as the continuation of the paper [23] that has been published by the author and can be applied on the study of distribution of the generalized zeros of the half-linear dynamic equation:ξ€·ξ€·π‘₯π‘Ÿ(𝑑)Ξ”ξ€Έ(𝑑)𝛾Δ+π‘ž(𝑑)(π‘₯𝜎(𝑑))𝛾[]=0,onπ‘Ž,𝑏𝕋,(1.17) and according to the limited space the applications of these inequalities will be discussed in a different paper.

2. Main Results

In this section, we will prove the main results and this will be done by making use of the HΓΆlder inequality (see [11, Theorem 6.13]):ξ€œβ„Žπ‘Ž||||ξ‚Έξ€œπ‘“(𝑑)𝑔(𝑑)Ξ”π‘‘β‰€β„Žπ‘Ž||||𝑓(𝑑)𝛾Δ𝑑1/π›Ύξ‚Έξ€œβ„Žπ‘Ž||||𝑔(𝑑)πœˆξ‚ΉΞ”π‘‘1/𝜈,(2.1) where π‘Ž, β„Žβˆˆπ•‹ and 𝑓,π‘”βˆˆπΆrd(𝕀,ℝ),  𝛾>1 and 1/𝜈+1/𝛾=1, and inequality (see [24, page 500])||||π‘Ž+π‘π‘Ÿβ‰€2π‘Ÿβˆ’1ξ€·|π‘Ž|π‘Ÿ+||𝑏||π‘Ÿξ€Έ,forπ‘Ÿβ‰₯1,(2.2) where π‘Ž, 𝑏 are positive real numbers. We also need the formula(π‘₯𝛾(𝑑))Ξ”=ξ€œ10𝛾[β„Žπ‘₯𝜎]+(1βˆ’β„Ž)π‘₯π›Ύβˆ’1π‘‘β„Žπ‘₯Ξ”(𝑑),(2.3) which is a simple consequence of Keller’s chain rule [11, Theorem 1.90]. Now, we are ready to state and prove the main results.

Theorem 2.1. Let 𝕋 be a time scale with π‘Ž,π‘‹βˆˆπ•‹ and 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1, and let π‘Ÿ,𝑠 be nonnegative rd-continuous functions on (𝑋,𝑏)𝕋 such that βˆ«π‘‹π‘Žπ‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)(𝑑)Δ𝑑<∞. If π‘¦βˆΆ[π‘Ž,𝑋]βˆ©π•‹β†’β„+ is delta differentiable with 𝑦(π‘Ž)=0, (and 𝑦Δ  does not change sign in (π‘Ž,𝑋)𝕋), then one has ξ€œπ‘‹π‘Ž||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žΞ”π‘₯≀𝐾1ξ€œ(π‘Ž,𝑋,𝑝,π‘ž)π‘‹π‘Ž||π‘¦π‘Ÿ(π‘₯)Ξ”||(π‘₯)𝑝+π‘žΞ”π‘₯,(2.4) where 𝐾1(π‘Ž,𝑋,𝑝,π‘ž)=22π‘βˆ’1ξ‚΅π‘žξ‚Άπ‘+π‘žπ‘ž/(𝑝+π‘ž)Γ—ξƒ©ξ€œπ‘‹π‘Ž(𝑠(π‘₯))(𝑝+π‘ž)/𝑝(π‘Ÿ(π‘₯))βˆ’π‘ž/π‘ξ‚΅ξ€œπ‘₯π‘Žπ‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)Δ𝑑𝑝+π‘žβˆ’1ξƒͺΞ”π‘₯𝑝/(𝑝+π‘ž)+2π‘βˆ’1supπ‘Žβ‰€π‘₯β‰€π‘‹ξ‚΅πœ‡π‘(π‘₯)𝑠(π‘₯)ξ‚Ά.π‘Ÿ(π‘₯)(2.5)

Proof. Since 𝑦Δ(𝑑) does not change sign in (π‘Ž,𝑋)𝕋, we have ||||=ξ€œπ‘¦(π‘₯)π‘₯π‘Ž||𝑦Δ||[](𝑑)Δ𝑑,forπ‘₯βˆˆπ‘Ž,𝑋𝕋.(2.6) This implies that ||||=ξ€œπ‘¦(π‘₯)π‘₯π‘Ž1(π‘Ÿ(𝑑))1/(𝑝+π‘ž)(π‘Ÿ(𝑑))1/(𝑝+π‘ž)||𝑦Δ||(𝑑)Δ𝑑.(2.7) Now, since π‘Ÿ is nonnegative on (π‘Ž,𝑋)𝕋, then it follows from the HΓΆlder inequality (2.1) with 1𝑓(𝑑)=(π‘Ÿ(𝑑))1/(𝑝+π‘ž),𝑔(𝑑)=(π‘Ÿ(𝑑))1/(𝑝+π‘ž)||𝑦Δ||(𝑑),𝛾=𝑝+π‘žπ‘+π‘žβˆ’1,𝜈=𝑝+π‘ž,(2.8) that ξ€œπ‘₯π‘Ž||𝑦Δ||ξ‚΅ξ€œ(𝑑)Δ𝑑≀π‘₯π‘Ž1(π‘Ÿ(𝑑))1/(𝑝+π‘žβˆ’1)Δ𝑑(𝑝+π‘žβˆ’1)/(𝑝+π‘ž)ξ‚΅ξ€œπ‘₯π‘Ž||π‘¦π‘Ÿ(𝑑)Ξ”||(𝑑)𝑝+π‘žξ‚ΆΞ”π‘‘1/(𝑝+π‘ž).(2.9) Then, for π‘Žβ‰€π‘₯≀𝑋, we get (note that 𝑦(π‘Ž)=0) that ||||𝑦(π‘₯)π‘β‰€ξ‚΅ξ€œπ‘₯π‘Ž1(π‘Ÿ(𝑑))1/(𝑝+π‘žβˆ’1)Δ𝑑𝑝((𝑝+π‘žβˆ’1)/(𝑝+π‘ž))ξ‚΅ξ€œπ‘₯π‘Ž||π‘¦π‘Ÿ(𝑑)Ξ”||(𝑑)𝑝+π‘žξ‚ΆΞ”π‘‘π‘/(𝑝+π‘ž).(2.10) Since π‘¦πœŽ=𝑦+πœ‡π‘¦Ξ”, we have 𝑦(π‘₯)+π‘¦πœŽ(π‘₯)=2𝑦(π‘₯)+πœ‡π‘¦Ξ”(π‘₯).(2.11) Applying inequality (2.2), we get (where 𝑝β‰₯1) that ||𝑦+π‘¦πœŽ||𝑝≀2π‘βˆ’1ξ€·2𝑝||𝑦||𝑝+πœ‡π‘||𝑦Δ||𝑝=22π‘βˆ’1||𝑦||𝑝+2π‘βˆ’1πœ‡π‘||𝑦Δ||𝑝.(2.12) Setting ξ€œπ‘§(π‘₯)∢=π‘₯π‘Ž||π‘¦π‘Ÿ(𝑑)Ξ”||(𝑑)𝑝+π‘žΞ”π‘‘,(2.13) we see that 𝑧(π‘Ž)=0, and 𝑧Δ||𝑦(π‘₯)=π‘Ÿ(π‘₯)Ξ”||(π‘₯)𝑝+π‘ž>0.(2.14) From this, we get that ||𝑦Δ||(π‘₯)𝑝+π‘ž=𝑧Δ(π‘₯),||π‘¦π‘Ÿ(π‘₯)Ξ”||(π‘₯)π‘ž=𝑧Δ(π‘₯)ξ‚Άπ‘Ÿ(π‘₯)π‘ž/(𝑝+π‘ž).(2.15) Also since 𝑠 is nonnegative on (π‘Ž,𝑋)𝕋, we have from (2.12) and (2.15) that 𝑠||𝑦(π‘₯)(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žβ‰€22π‘βˆ’1𝑠||𝑦||(π‘₯)(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘ž+2π‘βˆ’1πœ‡π‘||𝑦(π‘₯)𝑠(π‘₯)Ξ”||𝑝+π‘žβ‰€22π‘βˆ’1ξ‚΅1𝑠(π‘₯)ξ‚Άπ‘Ÿ(π‘₯)π‘ž/(𝑝+π‘ž)Γ—ξ‚΅ξ€œπ‘₯π‘Ž1π‘Ÿ1/(𝑝+π‘žβˆ’1)(𝑑)Δ𝑑𝑝((𝑝+π‘žβˆ’1)/(𝑝+π‘ž))Γ—(𝑧(π‘₯))𝑝/(𝑝+π‘ž)𝑧Δ(π‘₯)π‘ž/(𝑝+π‘ž)+2π‘βˆ’1πœ‡π‘ξ‚΅π‘§(π‘₯)𝑠(π‘₯)Ξ”(π‘₯)ξ‚Ά.π‘Ÿ(π‘₯)(2.16) This implies that ξ€œπ‘‹π‘Ž||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žΞ”π‘₯≀22π‘βˆ’1ξ€œπ‘‹π‘Žξ‚΅1𝑠(π‘₯)π‘Ÿξ‚Ά(π‘₯)π‘ž/(𝑝+π‘ž)Γ—ξ‚΅ξ€œπ‘₯π‘Ž1π‘Ÿ1/(𝑝+π‘žβˆ’1)(𝑑)Δ𝑑𝑝((𝑝+π‘žβˆ’1)/(𝑝+π‘ž))Γ—(𝑧(π‘₯))𝑝/(𝑝+π‘ž)𝑧Δ(π‘₯)π‘ž/(𝑝+π‘ž)Ξ”π‘₯+2π‘βˆ’1ξ€œπ‘‹π‘Žξ‚΅πœ‡π‘π‘ (π‘₯)ξ‚Άπ‘§π‘Ÿ(π‘₯)Ξ”(π‘₯)Ξ”π‘₯≀22π‘βˆ’1ξ€œπ‘‹π‘Žξ‚΅1𝑠(π‘₯)ξ‚Άπ‘Ÿ(π‘₯)π‘ž/(𝑝+π‘ž)Γ—ξ‚΅ξ€œπ‘₯π‘Ž1π‘Ÿ1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)Δ𝑑𝑝((𝑝+π‘žβˆ’1)/(𝑝+π‘ž))Γ—(𝑧(π‘₯))𝑝/(𝑝+π‘ž)𝑧Δ(π‘₯)π‘ž/(𝑝+π‘ž)Ξ”π‘₯+2π‘βˆ’1maxπ‘Žβ‰€π‘₯β‰€π‘‹ξ‚΅πœ‡π‘π‘ (π‘₯)ξ‚Άξ€œπ‘Ÿ(π‘₯)π‘‹π‘Žπ‘§Ξ”(π‘₯)Ξ”π‘₯.(2.17) Supposing that the integrals in (2.17) exist and again applying the HΓΆlder inequality (2.1) with indices 𝑝+π‘ž/𝑝 and 𝑝+π‘ž/π‘ž on the first integral on the right hand side, we have ξ€œπ‘‹π‘Ž||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žΞ”π‘₯≀22π‘βˆ’1ξƒ©ξ€œπ‘‹π‘Žπ‘ (𝑝+π‘ž)/𝑝1(π‘₯)ξ‚Άπ‘Ÿ(π‘₯)π‘ž/π‘ξ‚΅ξ€œπ‘₯π‘Ž1π‘Ÿ1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)Δ𝑑(𝑝+π‘žβˆ’1)ξƒͺΞ”π‘₯𝑝/(𝑝+π‘ž)Γ—ξ‚΅ξ€œπ‘‹π‘Žπ‘§π‘/π‘ž(π‘₯)𝑧Δ(π‘₯)Ξ”π‘₯π‘ž/(𝑝+π‘ž)+2π‘βˆ’1supπ‘Žβ‰€π‘₯β‰€π‘‹ξ‚΅πœ‡π‘π‘ (π‘₯)ξ‚Άξ€œπ‘Ÿ(π‘₯)π‘‹π‘Žπ‘§Ξ”(π‘₯)Ξ”π‘₯.(2.18) From (2.14), and the chain rule (2.3), we obtain 𝑧𝑝/π‘ž(π‘₯)π‘§Ξ”π‘ž(π‘₯)≀𝑧𝑝+π‘ž(𝑝+π‘ž)/π‘žξ€Έ(π‘₯)Ξ”.(2.19) Substituting (2.19) into (2.18) and using the fact that 𝑧(π‘Ž)=0, we have that ξ€œπ‘‹π‘Ž||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žΞ”π‘₯≀22π‘βˆ’1ξƒ©ξ€œπ‘‹π‘Žπ‘ (𝑝+π‘ž)/𝑝1(π‘₯)ξ‚Άπ‘Ÿ(π‘₯)π‘ž/π‘ξ‚΅ξ€œπ‘₯π‘Ž1π‘Ÿ1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)Δ𝑑(𝑝+π‘žβˆ’1)ξƒͺΞ”π‘₯𝑝/(𝑝+π‘ž)×𝑝𝑝+π‘žπ‘ž/(𝑝+π‘ž)ξ‚΅ξ€œπ‘‹π‘Žξ€·π‘§(𝑝+π‘ž)/π‘žξ€Έ(𝑑)Ξ”ξ‚ΆΞ”π‘‘π‘ž/(𝑝+π‘ž)+2π‘βˆ’1supπ‘Žβ‰€π‘₯β‰€π‘‹ξ‚΅πœ‡π‘π‘ (π‘₯)ξ‚Άξ€œπ‘Ÿ(π‘₯)π‘‹π‘Žπ‘§Ξ”=ξƒ©ξ€œ(π‘₯)Ξ”π‘₯π‘‹π‘Žπ‘ (𝑝+π‘ž)/𝑝(ξ‚΅1π‘₯)ξ‚Άπ‘Ÿ(π‘₯)π‘ž/π‘ξ‚΅ξ€œπ‘₯π‘Ž1π‘Ÿ1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)Δ𝑑(𝑝+π‘žβˆ’1)ξƒͺΞ”π‘₯𝑝/(𝑝+π‘ž)Γ—22π‘βˆ’1ξ‚΅π‘žξ‚Άπ‘+π‘žπ‘ž/(𝑝+π‘ž)𝑧(𝑋)+2π‘βˆ’1supπ‘Žβ‰€π‘₯β‰€π‘‹ξ‚΅πœ‡π‘π‘ (π‘₯)π‘Ÿξ‚Ά(π‘₯)𝑧(𝑋).(2.20) Using (2.13), we have from the last inequality that ξ€œπ‘‹π‘Ž||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žΞ”π‘₯≀𝐾1ξ€œ(π‘Ž,𝑏,𝑝,π‘ž)π‘‹π‘Ž||π‘¦π‘Ÿ(π‘₯)Ξ”||(π‘₯)𝑝+π‘žΞ”π‘₯,(2.21) which is the desired inequality (2.4). The proof is complete.

Here, we only state the following theorem, since its proof is the same as that of Theorem 2.1, with [π‘Ž,𝑋] replaced by [𝑏,𝑋] and ∫|𝑦(π‘₯)|=𝑏π‘₯|𝑦Δ(𝑑)|Δ𝑑.

Theorem 2.2. Let 𝕋 be a time scale with 𝑋,π‘βˆˆπ•‹ and 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1, and let π‘Ÿ,𝑠 be nonnegative rd-continuous functions on (𝑋,𝑏)𝕋  such that βˆ«π‘π‘‹π‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)(𝑑)Δ𝑑<∞. If π‘¦βˆΆ[𝑋,𝑏]βˆ©π•‹β†’β„+ is delta differentiable with 𝑦(𝑏)=0, (and 𝑦Δ does not change sign in (𝑋,𝑏)𝕋), then one has ξ€œπ‘π‘‹||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žΞ”π‘₯≀𝐾2ξ€œ(𝑋,𝑏,𝑝,π‘ž)𝑏𝑋||π‘¦π‘Ÿ(π‘₯)Ξ”||(π‘₯)𝑝+π‘žΞ”π‘₯,(2.22) where 𝐾2(𝑋,𝑏,𝑝,π‘ž)=22π‘βˆ’1ξ‚΅π‘žξ‚Άπ‘+π‘žπ‘ž/(𝑝+π‘ž)Γ—ξƒ©ξ€œπ‘π‘‹(𝑠(π‘₯))(𝑝+π‘ž)/𝑝(π‘Ÿ(π‘₯))βˆ’π‘ž/π‘ξ‚΅ξ€œπ‘π‘₯π‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)Δ𝑑(𝑝+π‘žβˆ’1)ξƒͺΞ”π‘₯𝑝/(𝑝+π‘ž)+2π‘βˆ’1sup𝑋≀π‘₯β‰€π‘ξ‚΅πœ‡π‘(π‘₯)𝑠(π‘₯)ξ‚Ά.π‘Ÿ(π‘₯)(2.23)

Note that when 𝕋=ℝ, we have π‘¦πœŽ=𝑦 and πœ‡(π‘₯)=0. Then from Theorems 2.1 and 2.2 we have the following integral inequalities.

Corollary 2.3. Assume that 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1, and let π‘Ÿ,𝑠 be nonnegative continuous functions on (π‘Ž,𝑋)ℝ  such that βˆ«π‘‹π‘Žπ‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)(𝑑)𝑑𝑑<∞.   If π‘¦βˆΆ[π‘Ž,𝑋]βˆ©β„β†’β„+ is differentiable with 𝑦(π‘Ž)=0, (and 𝑦Δ does not change sign in (π‘Ž,𝑋)ℝ),  then one has ξ€œπ‘‹π‘Ž||||𝑠(π‘₯)𝑦(π‘₯)𝑝||π‘¦ξ…ž||(π‘₯)π‘žπ‘‘π‘₯≀𝐢1ξ€œ(π‘Ž,𝑋,𝑝,π‘ž)π‘‹π‘Ž||π‘¦π‘Ÿ(π‘₯)ξ…ž||(π‘₯)𝑝+π‘žπ‘‘π‘₯,(2.24) where 𝐢1(π‘Ž,𝑋,𝑝,π‘ž)=2π‘βˆ’1ξ‚΅π‘žξ‚Άπ‘+π‘žπ‘ž/(𝑝+π‘ž)Γ—ξƒ©ξ€œπ‘‹π‘Ž(𝑠(π‘₯))(𝑝+π‘ž)/𝑝(π‘Ÿ(π‘₯))βˆ’π‘ž/π‘ξ‚΅ξ€œπ‘₯π‘Žπ‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)𝑑𝑑(𝑝+π‘žβˆ’1)ξƒͺ𝑑π‘₯𝑝/(𝑝+π‘ž).(2.25)

Corollary 2.4. Assume that 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1, and let π‘Ÿ,𝑠 be nonnegative continuous functions on (𝑋,𝑏)ℝ such that βˆ«π‘π‘‹π‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)(𝑑)𝑑𝑑<∞. If π‘¦βˆΆ[𝑋,𝑏]βˆ©β„β†’β„+ is delta differentiable with 𝑦(𝑏)=0, (and π‘¦ξ…ž does not change sign in (𝑋,𝑏)ℝ), then one has ξ€œπ‘π‘‹||||𝑠(π‘₯)𝑦(π‘₯)𝑝||π‘¦ξ…ž||(π‘₯)π‘žπ‘‘π‘₯≀𝐢2ξ€œ(𝑋,𝑏,𝑝,π‘ž)𝑏𝑋||π‘¦π‘Ÿ(π‘₯)ξ…ž||(π‘₯)𝑝+π‘žπ‘‘π‘₯,(2.26) where 𝐢2(𝑋,𝑏,𝑝,π‘ž)=2π‘βˆ’1ξ‚΅π‘žξ‚Άπ‘+π‘žπ‘ž/(𝑝+π‘ž)Γ—ξƒ©ξ€œπ‘π‘‹(𝑠(π‘₯))(𝑝+π‘ž)/𝑝(π‘Ÿ(π‘₯))βˆ’π‘ž/π‘ξ‚΅ξ€œπ‘π‘₯π‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)𝑑𝑑(𝑝+π‘žβˆ’1)ξƒͺ𝑑π‘₯𝑝/(𝑝+π‘ž).(2.27)

In the following, we assume that there exists β„Žβˆˆ(π‘Ž,𝑏) which is the unique solution of the equation:𝐾(𝑝,π‘ž)=𝐾1(π‘Ž,β„Ž,𝑝,π‘ž)=𝐾2(β„Ž,𝑏,𝑝,π‘ž)<∞,(2.28) where 𝐾1(π‘Ž,β„Ž,𝑝,π‘ž) and 𝐾2(β„Ž,𝑏,𝑝,π‘ž) are defined as in Theorems 2.1 and 2.2. Note that sinceξ€œπ‘π‘Ž||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žξ€œΞ”π‘₯=π‘‹π‘Ž||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘ž+ξ€œΞ”π‘₯𝑏𝑋||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žΞ”π‘₯,(2.29) then the proof will be a combination of Theorems 2.1 and 2.2.

Theorem 2.5. Let 𝕋 be a time scale with π‘Ž,π‘βˆˆπ•‹ and 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1, and let π‘Ÿ,𝑠 be nonnegative rd-continuous functions on (π‘Ž,𝑏)𝕋 such that βˆ«π‘π‘Žπ‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)(𝑑)Δ𝑑<∞. If π‘¦βˆΆ[π‘Ž,𝑏]βˆ©π•‹β†’β„+  is delta differentiable with 𝑦(π‘Ž)=0=𝑦(𝑏), (and 𝑦Δ does not change sign in (π‘Ž,𝑏)𝕋), then one has ξ€œπ‘π‘Ž||𝑠(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žξ€œΞ”π‘₯≀𝐾(𝑝,π‘ž)π‘π‘Ž||π‘¦π‘Ÿ(π‘₯)Ξ”||(π‘₯)𝑝+π‘žΞ”π‘₯.(2.30)

For π‘Ÿ=𝑠 in Theorem 2.1, we obtain the following result.

Corollary 2.6. Let 𝕋 be a time scale with π‘Ž,π‘‹βˆˆπ•‹ and 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1, and let π‘Ÿβ€‰β€‰be a nonnegative rd-continuous function on (π‘Ž,𝑋)𝕋   such that βˆ«π‘‹π‘Žπ‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)(𝑑)Δ𝑑<∞. If π‘¦βˆΆ[π‘Ž,𝑋]βˆ©π•‹β†’β„+  is delta differentiable with 𝑦(π‘Ž)=0, (and 𝑦Δ  does not change sign in (π‘Ž,𝑋)𝕋)  then one has ξ€œπ‘‹π‘Ž||π‘Ÿ(π‘₯)𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žΞ”π‘₯β‰€πΎβˆ—1ξ€œ(π‘Ž,𝑋,𝑝,π‘ž)π‘‹π‘Ž||π‘¦π‘Ÿ(π‘₯)Ξ”||(π‘₯)𝑝+π‘žΞ”π‘₯,(2.31) where πΎβˆ—1(π‘Ž,𝑋,𝑝,π‘ž)=22π‘βˆ’1ξ‚΅π‘žξ‚Άπ‘+π‘žπ‘ž/(𝑝+π‘ž)Γ—ξƒ©ξ€œπ‘‹π‘Žξ‚΅ξ€œπ‘Ÿ(π‘₯)π‘₯π‘Žπ‘Ÿβˆ’1/(𝑝+π‘žβˆ’1)ξ‚Ά(𝑑)Δ𝑑(𝑝+π‘žβˆ’1)ξƒͺΞ”π‘₯𝑝/(𝑝+π‘ž)+2π‘βˆ’1supπ‘Žβ‰€π‘₯≀𝑋(πœ‡π‘(π‘₯)).(2.32)

From Theorems 2.2 and 2.5 one can derive similar results by setting π‘Ÿ=𝑠. The details are left to the reader.

On a time scale 𝕋, we note from the chain rule (2.3) thatξ€·(π‘‘βˆ’π‘Ž)𝑝+π‘žξ€ΈΞ”ξ€œ=(𝑝+π‘ž)10[]β„Ž(𝜎(𝑑)βˆ’π‘Ž)+(1βˆ’β„Ž)(π‘‘βˆ’π‘Ž)𝑝+π‘žβˆ’1β‰₯ξ€œπ‘‘β„Ž(𝑝+π‘ž)10[β„Ž](π‘‘βˆ’π‘Ž)+(1βˆ’β„Ž)(π‘‘βˆ’π‘Ž)𝑝+π‘žβˆ’1π‘‘β„Ž=(𝑝+π‘ž)(π‘‘βˆ’π‘Ž)𝑝+π‘žβˆ’1.(2.33) This implies thatξ€œπ‘‹π‘Ž(π‘₯βˆ’π‘Ž)(𝑝+π‘žβˆ’1)ξ€œΞ”π‘₯β‰€π‘‹π‘Ž1ξ€·(𝑝+π‘ž)(π‘₯βˆ’π‘Ž)𝑝+π‘žξ€ΈΞ”Ξ”π‘₯=(π‘‹βˆ’π‘Ž)𝑝+π‘ž(𝑝+π‘ž).(2.34) From this and (2.32) (by putting π‘Ÿ(𝑑)=1), we get that thatπΎβˆ—1(π‘Ž,𝑋,𝑝,π‘ž)=22π‘βˆ’1ξ‚΅π‘žξ‚Άπ‘+π‘žπ‘ž/(𝑝+π‘ž)Γ—ξ‚΅ξ€œπ‘‹π‘Ž(π‘₯βˆ’π‘Ž)(𝑝+π‘žβˆ’1)ξ‚ΆΞ”π‘₯𝑝/(𝑝+π‘ž)≀22π‘βˆ’1ξ‚΅π‘žξ‚Άπ‘+π‘žπ‘ž/(𝑝+π‘ž)ξ‚΅(π‘‹βˆ’π‘Ž)𝑝+π‘žξ‚Ά(𝑝+π‘ž)𝑝/(𝑝+π‘ž)+2π‘βˆ’1maxπ‘Žβ‰€π‘₯≀𝑋(πœ‡π‘(π‘₯))=2π‘βˆ’1maxπ‘Žβ‰€π‘₯≀𝑋(πœ‡π‘(π‘₯))+22π‘βˆ’1π‘žπ‘ž/(𝑝+π‘ž)𝑝+π‘ž(π‘‹βˆ’π‘Ž)𝑝.(2.35) So setting π‘Ÿ=1 in (2.31) and using (2.35), we have the following result.

Corollary 2.7. Let 𝕋 be a time scale with π‘Ž,π‘‹βˆˆπ•‹ and 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1. If π‘¦βˆΆ[π‘Ž,𝑋]βˆ©π•‹β†’β„+ is delta differentiable with 𝑦(π‘Ž)=0, (and 𝑦Δ does not change sign in (π‘Ž,𝑋)𝕋), then one has ξ€œπ‘‹π‘Ž||𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žξ€œΞ”π‘₯≀𝐿(π‘Ž,𝑏,𝑝,π‘ž)π‘‹π‘Ž||𝑦Δ||(π‘₯)𝑝+π‘žΞ”π‘₯,(2.36) where ξ‚΅2𝐿(π‘Ž,𝑏,𝑝,π‘ž)∢=2π‘βˆ’1π‘žπ‘ž/(𝑝+π‘ž)𝑝+π‘žΓ—(π‘‹βˆ’π‘Ž)𝑝+2π‘βˆ’1supπ‘Žβ‰€π‘₯β‰€π‘‹πœ‡π‘ξ‚Ά(π‘₯).(2.37)

Remark 2.8. Note that when 𝕋=ℝ, we have π‘¦πœŽ=𝑦, πœ‡(π‘₯)=0 and then the inequality (2.36) becomes ξ€œπ‘‹π‘Ž||||𝑦(π‘₯)𝑝||π‘¦ξ…ž||(π‘₯)π‘žπ‘‘π‘₯≀2π‘βˆ’1π‘žπ‘ž/(𝑝+π‘ž)(𝑝+π‘ž)Γ—(π‘‹βˆ’π‘Ž)π‘ξ€œπ‘‹π‘Ž||π‘¦ξ…ž||(π‘₯)𝑝+π‘žπ‘‘π‘₯.(2.38) Note also that when 𝑝=1 and π‘ž=1, then the inequality (2.38) becomes ξ€œπ‘‹π‘Ž||||||𝑦𝑦(π‘₯)ξ…ž||(π‘₯)𝑑π‘₯≀(π‘‹βˆ’π‘Ž)2ξ€œπ‘‹π‘Ž||π‘¦ξ…ž||(π‘₯)2𝑑π‘₯,(2.39) which is the Opial inequality (1.2).
When 𝕋=β„•, we have form (2.36) the following discrete Opial’s type inequality.

Corollary 2.9. Assume that 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1 and {π‘Ÿπ‘–}0≀𝑖≀𝑁 be a nonnegative real sequence. If {𝑦𝑖}0≀𝑖≀𝑁 is a sequence of positive real numbers with 𝑦(0)=0, then π‘βˆ’1𝑛=1||||π‘Ÿ(𝑛)𝑦(𝑛)+𝑦(𝑛+1)𝑝||||Δ𝑦(𝑛)π‘žβ‰€ξ‚΅22π‘βˆ’1π‘žπ‘ž/(𝑝+π‘ž)(π‘βˆ’π‘Ž)𝑝(𝑝+π‘ž)+2π‘βˆ’1ξ‚Άπ‘βˆ’1𝑛=0||||π‘Ÿ(𝑛)Δ𝑦(𝑛)𝑝+π‘ž.(2.40)

The inequality (2.36) has immediate application to the case where 𝑦(π‘Ž)=𝑦(𝑏)=0. Choose 𝑋=(π‘Ž+𝑏)/2 and apply (2.32) to [π‘Ž,𝑐] and [𝑐,𝑏] and then add we obtain the following inequality.

Corollary 2.10. Let 𝕋 be a time scale with π‘Ž,π‘βˆˆπ•‹ and 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1. If π‘¦βˆΆ[π‘Ž,𝑏]βˆ©π•‹β†’β„+ is delta differentiable with 𝑦(π‘Ž)=0=𝑦(𝑏), then one has ξ€œπ‘π‘Ž||𝑦(π‘₯)+π‘¦πœŽ||(π‘₯)𝑝||𝑦Δ||(π‘₯)π‘žξ€œΞ”π‘₯≀𝐹(π‘Ž,𝑏,𝑝,π‘ž)π‘π‘Ž||𝑦Δ||(π‘₯)𝑝+π‘žΞ”π‘₯,(2.41) where 𝐹(π‘Ž,𝑏,𝑝,π‘ž)∢=22π‘βˆ’1π‘žπ‘ž/(𝑝+π‘ž)𝑝+π‘žπ‘βˆ’π‘Ž2𝑝+2π‘βˆ’1supπ‘Žβ‰€π‘₯≀𝑏(πœ‡π‘(π‘₯)).(2.42)

From this inequality, we have the following discrete Opial type inequality.

Corollary 2.11. Assume that 𝑝,π‘ž be positive real numbers such that 𝑝β‰₯1. If {𝑦𝑖}0≀𝑖≀𝑁  is a sequence of real numbers with 𝑦(0)=0=𝑦(𝑁), then π‘βˆ’1𝑛=1||||π‘Ÿ(𝑛)𝑦(𝑛)+𝑦(𝑛+1)𝑝||||Δ𝑦(𝑛)π‘žβ‰€ξ‚΅22π‘βˆ’1π‘žπ‘ž/(𝑝+π‘ž)𝑝+π‘žπ‘βˆ’π‘Ž2𝑝+2π‘βˆ’1ξ‚Άπ‘βˆ’1𝑛=0||||π‘Ÿ(𝑛)Δ𝑦(𝑛)𝑝+π‘ž.(2.43)

By setting 𝑝=π‘ž=1 in (2.41) we have the following Opial type inequality on a time scale.

Corollary 2.12. Let 𝕋 be a time scale with π‘Ž,π‘βˆˆπ•‹. If π‘¦βˆΆ[π‘Ž,𝑋]βˆ©π•‹β†’β„+ is delta differentiable with 𝑦(π‘Ž)=0=𝑦(𝑏), then one has ξ€œπ‘π‘Ž||𝑦(π‘₯)+π‘¦πœŽ||||𝑦(π‘₯)Ξ”||ξ‚΅(π‘₯)Ξ”π‘₯≀(π‘βˆ’π‘Ž)2+supπ‘Žβ‰€π‘₯β‰€π‘ξ‚Άξ€œ(πœ‡(π‘₯))π‘π‘Ž||𝑦Δ||(π‘₯)2Ξ”π‘₯.(2.44)

As special cases from (2.44) on the continuous and discrete spaces, that is, when 𝕋=ℝ and 𝕋=β„•, we have the following inequalities.

Corollary 2.13. If π‘¦βˆΆ[π‘Ž,𝑏]βˆ©π•‹β†’β„ is differentiable with 𝑦(π‘Ž)=0=𝑦(𝑏), then one has the Opial inequality ξ€œπ‘π‘Ž||||||𝑦𝑦(π‘₯)ξ…ž||(π‘₯)𝑑π‘₯≀(π‘βˆ’π‘Ž)4ξ€œπ‘π‘Ž||π‘¦ξ…ž||(π‘₯)2𝑑π‘₯.(2.45)

Corollary 2.14. If {𝑦𝑖}0≀𝑖≀𝑁 is a sequence of real numbers with 𝑦(0)=0=𝑦(𝑁), then π‘βˆ’1𝑛=1||||||||≀𝑁𝑦(𝑛)+𝑦(𝑛+1)Δ𝑦(𝑛)2+1π‘βˆ’1𝑛=0||||Δ𝑦(𝑛)2.(2.46)

Acknowledgment

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Centre.