Skip to main content Skip to main navigation menu Skip to site footer
Type: Articles
Published: 2013-02-07
Page range: 1–35
Abstract views: 27
PDF downloaded: 1

Phylogeny and classification of the New World suboscines (Aves, Passeriformes)

Molecular Systematics Laboratory, Swedish Museum of Natural History, P. O. Box 50007, 10405 Stockholm, Sweden
Molecular Systematics Laboratory, Swedish Museum of Natural History, P. O. Box 50007, 10405 Stockholm, Sweden
Director of Science, Swedish Museum of Natural History, P. O. Box 50007, 10405 Stockholm, Sweden
Zoological Museum, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
Aves Furnariida Tyrannida phylogeny classification

Abstract

Here we present a phylogenetic hypothesis for the New World suboscine radiation, based on a dataset comprising of 219 terminal taxa and five nuclear molecular markers (ca. 6300 bp). We also estimate ages of the main clades in this radiation. This study corroborates many of the recent insights into the phylogenetic relationships of New World suboscines. It further clarifies a number of cases for which previous studies have been inconclusive, such as the relationships of Conopophagidae, Melanopareiidae and Tityridae. We find a remarkable difference in age of the initial divergence events in Furnariida and Tyrannida. The deepest branches in Furnariida are of Eocene age, whereas the extant lineages of Tyrannida have their origin in the Oligocene. Approximately half of the New World suboscine species are harboured in 5 large clades that started to diversify around the Mid Miocene Climatic Optimum (16–12 Mya). Based on our phylogenetic results we propose a revised classification of the New World suboscines. We also erect new family or subfamily level taxa for four small and isolated clades: Berlepschiinae, Pipritidae, Tachurididae and Muscigrallinae.

References

  1. Aleixo, A. & Rossetti, D.F. (2007) Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? Journal of Ornithology, 148, 443–453. http://dx.doi.org/10.1007/s10336-007-0168-7

    Barker, F.K., Barrowclough, G. & Groth, J.G. (2002) A phylogenetic hypothesis for passerine birds: taxonomic and biogeographical implications of an analysis of nuclear DNA sequence data. Proceeding of the Royal Society of London, Series B, 269, 295–308. http://dx.doi.org/10.1098/rspb.2001.1883

    Barber, B.R. & Rice, N.H. (2007) Systematics and evolution in the Tityrinae (Passeriformes: Tyrannoidea). Auk, 124, 1317–1329. http://dx.doi.org/10.1642/0004-8038(2007)124[1317:SAEITT]2.0.CO;2

    Bravo, G.A., Remsen, J.V. Jr., Whitney, B.M. & Brumfield, R.T. (2012). DNA sequence data reveal a subfamily-level divergence within Thamnophilidae (Aves: Passeriformes). Molecular Phylogenetics and Evolution, 65, 287–293.http://dx.doi.org/10.1016/j.ympev.2012.06.016

    Brumfield, R.T., Tello, J.G., Cheviron, Z.A., Carling, M.D., Crochet, N. & Rosenberg, K.V. (2007) Phylogenetic conservatism and antiquity of a tropical specialization: Army-ant-following in the typical antbirds (Thamnophilidae). Molecular Phylogenetics and Evolution, 45, 113. http://dx.doi.org/10.1016/j.ympev.2007.07.019

    Chesser, R.T. (2004) Molecular systematics of New World Suboscines. Molecular Phylogenetics and Evolution, 32, 11–24. http://dx.doi.org/10.1016/j.ympev.2003.11.015

    Derryberry, E.P., Claramunt, S., Derryberry, G., Chesser, R.T., Cracraft, J., Aleixo, A., Pérez-Emán, J., Remsen, J.V.Jr. & Brumfield, R.T. (2011) Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution, 65, 2973–2986. http://dx.doi.org/10.1111/j.1558-5646.2011.01374.x

    Ericson, P.G.P., Christidis, L., Cooper, A., Irestedt, M., Jackson, J., Johansson, U.S. & Norman, J.A. (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceeding of the Royal Society of London, Series B, 269, 235–241. http://dx.doi.org/10.1098/rspb.2001.1877

    Ericson, P.G.P., Zuccon, D., Ohlson, J.I., Johansson, U.S., Alvarenga, H. & Prum, R.O. (2006) Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins and their allies (Aves: Tyrannida). Molecular Phylogenetics and Evolution, 40, 471–483. http://dx.doi.org/10.1016/j.ympev.2006.03.031

    Ericson, P.G.P., Olson, S.L., Irestedt, M., Alvarenga, H. & Fjeldså, J. (2010) Circumscription of a monophyletic family for the tapaculos (Aves: Rhinocryptidae): Psiloramphus in and Melanopareia out. Journal of Ornithology, 151, 337–345. http://dx.doi.org/10.1007/s10336-009-0460-9

    Fjeldså, J., Irestedt, M. & Ericson, P.G.P. (2005) Molecular data reveal some major adaptational shifts in the early evolution of the most diverse avian family, the Furnariidae. Journal of Ornithology, 146, 1–13. http://dx.doi.org/10.1007/s10336-004-0054-5

    Fjeldså, J. & Irestedt, M. (2009) Diversification of the South American avifauna: patterns and implications for conservation in the Andes. Annals of the Missouri Botanical Garden, 96, 398–409. http://dx.doi.org/10.3417/2007148

    Gill, F & Donsker, D. (2012) IOC World Bird Names (v 2.11). Available from http://www.worldbirdnames.org/ [Accessed 2012-04-16].

    Hoorn, C. & Wesselingh, F.P. (2010) Amazonia: Landscape and Species Evolution. A Look into the Past. Wiley Blackwell. 482 pp.

    Irestedt, M., Fjeldså, J., Johansson, U.S. & Ericson, P.G.P. (2002) Systematic relationships and biogeography of the tracheophone suboscines (Aves: Passeriformes). Molecular Phylogenetics and Evolution, 23, 499–512. http://dx.doi.org/10.1016/S1055-7903(02)00034-9

    Irestedt, M., Fjeldså, J. & Ericson, P.G.P. (2004a). Phylogenetic relationships of woodcreepers (Aves: Dendrocolaptinae) - incongruence between molecular and morphological data. Journal of Avian Biology, 35, 280–288. http://dx.doi.org/10.1111/j.0908-8857.2004.03234.x

    Irestedt, M., Fjeldså, J., Nylander, J.A.A. & Ericson, P.G.P. (2004b) Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors. BMC Evolutionary Biology, 4, 23. http://dx.doi.org/10.1186/1471-2148-4-23

    Irestedt, M., Fjeldså, J. & Ericson, P.G.P. (2006) Evolution of the ovenbird-woodcreeper assemblage (Aves: Furnariidae) – major shifts in nest architecture and adaptive radiation. Journal of Avian Biology, 37, 260–272. http://dx.doi.org/10.1111/j.2006.0908-8857.03612.x

    Irestedt, M., Fjeldså, J., Dalén, L. & Ericson, P.G.P. (2009) Convergent evolution, habitat shifts and variable diversification rates in the ovenbird-woodcreeper family (Furnariidae). BMC Evolutionary Biology, 9, 268. http://dx.doi.org/10.1186/1471-2148-9-268

    Irestedt, M. & Ohlson, J.I. (2008). The division of the major songbird radiation into Passerida and “core Corvoidea“ (Aves: Passeriformes) - the species tree versus gene trees. Zoologica Scripta, 37, 305–313. http://dx.doi.org/10.1111/j.1463-6409.2007.00321.x

    Jacobs, B.F., Kingston, J.D. & Jacobs, L.L. (1999) The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590–643. http://dx.doi.org/10.2307/2666186

    Ladiges, P.Y. & Cantrill, D. (2007) New Caledonian-Australian connection: biogeographic patterns and geology. Australian Systematic Botany, 20, 383389. http://dx.doi.org/10.1071/SB07018

    McKay, B.D., Barker, F.K., Mays, H.L.Jr., Doucet, S.M. & Hill, G.E. (2010) A molecular phylogenetic hypothesis for the manakins (Aves: Pipridae). Molecular Phylogenetics and Evolution, 55, 733737. http://dx.doi.org/10.1016/j.ympev.2010.02.024

    Moyle, R.G., Chesser, R.T, Brumfield, R.T., Tello, J.G., Marchese, D.J. & Cracraft, J. (2009) Phylogeny and phylogenetic classification of the antbirds, ovenbirds, woodcreepers and allies (Aves: Passeriformes: infraorder Furnariides). Cladistics, 25, 386405. http://dx.doi.org/10.1111/j.1096-0031.2009.00259.x

    Nylander, J.A.A. (2004) MrModeltest v.2.2. Evolutionary Biology Center, Uppsala University. Uppsala, Sweden. Available from: http://www.abc.se/~nylander/

    Ohlson, J.I., Prum, R.O. & Ericson, P.G.P. (2007) A molecular phylogeny of the cotingas, (Aves: Cotingidae). Molecular Phylogenetics and Evolution, 42, 2537. http://dx.doi.org/10.1016/j.ympev.2006.05.041

    Ohlson, J.I., Fjeldså, J. & Ericson, P.G.P. (2008) Tyrant flycatchers coming out in the open: phylogeny and ecological radiation of Tyrannidae (Aves: Passeriformes). Zoologica Scripta, 37, 315335. http://dx.doi.org/10.1111/j.1463-6409.2008.00325.x

    Ohlson, J.I., Irestedt, M., Fjeldså, J. & Ericson, P.G.P. (2012) Nuclear DNA from a 180 years old museum skin reveals the relationships of the Kinglet Calyptura Calyptura cristata (Passeriformes, Tyrannides). Ibis, 154, 533–541. http://dx.doi.org/10.1111/j.1474-919X.2012.01243.x

    Rheindt, F.E., Christidis, L. & Norman, J.A. (2008a). Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes. BMC Evolutionary Biology, 8, 193. http://dx.doi.org/10.1186/1471-2148-8-193

    Rheindt, F.E., Norman, J.A. & Christidis, L. (2008b) Phylogenetic relationships of tyrant-flycatchers (Aves: Tyrannidae), with an emphasis on the elaeniine assemblage. Molecular Phylogenetics and Evolution, 46, 88101. http://dx.doi.org/10.1016/j.ympev.2007.09.011

    Rice, N.H. (2005) Phylogenetic relationships of antpitta genera (Passeriformes: Formicariidae). Auk, 122, 673683. http://dx.doi.org/10.1642/0004-8038(2005)122[0673:PROAGP]2.0.CO;2

    Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. http://dx.doi.org/10.1093/bioinformatics/btg180

    Silvestro, D. & Michalak, I. (2010) RAxMLGUI: a graphical front-end for RAxML. Available from http://sourceforge.net/projects/raxmlgui/.

    Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. http://dx.doi.org/10.1093/bioinformatics/btl446

    Svensen, H., Planke, S., Malthe-Sørensen, A., Jamtveit, B., Myklebust, R., Eidem, T. & Rey, S.S. (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–545. http://dx.doi.org/10.1038/nature02566

    Tello, J.G. & Bates, J.M. (2007) Molecular phylogenetics of the tody-tyrant and flatbill assemblage of tyrant flycatchers (Tyrannidae). Auk, 124, 134154. http://dx.doi.org/10.1642/0004-8038(2007)124[134:MPOTTA]2.0.CO;2

    Tello, J.G., Moyle, R.G., Marchese, D.J. & Cracraft, J. (2009) Phylogeny and phylogenetic classification of the tyrant flycatchers, cotingas, manakins and their allies (Aves: Tyrannides). Cladistics, 25, 429467. http://dx.doi.org/10.1111/j.1096-0031.2009.00254.x

    Treplin, S., Siegert, R., Bleidorn, C., Thompson, H.S., Fotso, R. & Tiedemann, R. (2008) Molecular phylogeny of songbirds (Aves: Passeriformes) and the relative utility of common nuclear marker loci. Cladistics, 24, 328349. http://dx.doi.org/10.1111/j.1096-0031.2007.00178.x

    Wilf, P., Cúneo, N.R., Johnson, K.R., Hicks, J.F., Wing, S.L. & Obradovich, J.D. (2003) High plant diversity in Eocene South America: Evidence from Patagonia. Science, 300, 122–125. http://dx.doi.org/10.1126/science.1080475

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693. http://dx.doi.org/10.1126/science.1059412