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ABSTRACT

The orphan nuclear receptor steroidogenic factor 1 (SF-1, also called Ad4BP and officially
designated NR5A1) has emerged as an essential regulator of endocrine development and function.
Initially identified as a tissue-specific transcriptional regulator of the cytochrome P450 steroid
hydroxylases, SF-1 has considerably broader roles, as evidenced from studies in knockout mice
lacking SF-1. The SF-1-knockout mice lacked adrenal glands and gonads and therefore died from
adrenal insufficiency within the first week after birth. In addition, SF-1 knockout mice exhibited
male-to-female sex reversal of their internal and external genitalia, impaired expression of multiple
markers of pituitary gonadotropes, and agenesis of the ventromedial hypothalamic nucleus (VMH).
These studies delineated essential roles of SF-1 in regulating endocrine differentiation and function
at multiple levels, particularly with respect to reproduction. This chapter will review the experiments
that established SF-1 as a pivotal, global determinant of endocrine differentiation and function. We
next discuss recent insights into the mechanisms controlling the expression and function of SF-1 as
well as the current status of research aimed at delineating its roles in specific tissues. Finally, we
highlight areas where additional studies are needed to expand our understanding of SF-1 action.

I. Initial Isolation of Steroidogenic Factor 1

Steroid hormones are essential for fluid and electrolyte balance, intermediary
metabolism, sexual differentiation, and reproductive function. Once the pathways
of steroid hormone biosynthesis were defined and shown to involve the concerted
actions of several cytochrome P450 mixed-function oxidases, attention turned to
elucidating the mechanisms that regulate the expression of these enzymes. With
the isolation of the bovine 21-hydroxylase cDNA (Whiteet al., 1984b), followed
shortly thereafter by the cloning of cDNAs encoding the side-chain cleavage
enzyme (Mattesonet al., 1984; Morohashiet al., 1984) and 11�-hydroxylase
(John et al., 1984), these questions could be addressed at a molecular level.
David Chaplin, a postdoctoral fellow in J.G. Seidman’s laboratory who previ-
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ously had isolated cosmids spanning the S region of the mouse H-2 complex,
cloned a cosmid that contained the mouse 21-hydroxylase gene and � 30 kb of
its 5�-flanking region (White et al., 1984a). The Schimmer laboratory had
extensive experience with Y1 mouse adrenocortical tumor cells, which expressed
several cytochrome P450 steroid hydroxylases – but not steroid 21-hydroxylase
— in a hormonally responsive manner and were readily amenable to both stable
and transient transfection (Schimmer, 1985). In a collaborative effort, the
Schimmer and Seidman laboratories showed that Y1 cells stably transfected with
the mouse 21-hydroxylase cosmid recovered hormonally regulated expression of
21-hydroxylase (Parker et al., 1985). Thereafter, 5�-deletion assays localized
sequences essential for cell-selective and hormone-regulated expression of the
21-hydroxylase gene to the proximal 330 bp of 5�-flanking DNA (Parker et al.,
1986; Handler et al., 1988).

Using similar approaches, a number of groups analyzed the 5�-flanking
regions of genes encoding the cytochrome P450 steroid hydroxylases (for
reviews of these studies, see Omura and Morohashi, 1995; Parker and Schimmer,
1995). In particular, studies by two groups identified shared AGGTCA promoter
elements in the proximal promoter regions of several of the steroid hydroxylases
that interacted with the same DNA-binding protein (Rice et al., 1991; Morohashi
et al., 1992). This protein, which initially was found only in steroidogenic cell
lines, was designated steroidogenic factor 1 (SF-1) or adrenal 4-binding protein
(Ad4BP). The selective expression of SF-1 in steroidogenic cells and its regu-
lation of multiple genes encoding steroid hydroxylases provided the first clues
that it was an important determinant of the cell-selective expression of the
steroidogenic enzymes.

Based on evidence that SF-1 was a key determinant of the expression of
the cytochrome P450 steroid hydroxylases, the Parker and Morohashi labo-
ratories independently cloned cDNAs encoding SF-1. Morohashi and col-
leagues used an oligonucleotide affinity column to purify the protein from
bovine adrenal glands, ultimately allowing them to obtain amino acid se-
quence and clone a bovine cDNA with an oligonucleotide probe (Honda et
al., 1993). In contrast, Douglas Rice, a postdoctoral fellow in the Parker
laboratory, reasoned that the AGGTCA DNA recognition motif represented a
binding site for an atypical member of the nuclear hormone receptor family.
Using a hybridization probe comprising the DNA-binding region of retinoid
X receptor, the Parker laboratory isolated a cDNA clone that was expressed
in adrenal gland, testes, and ovaries, but not in a variety of other tissues (Lala
et al., 1992).

Subsequent studies established that the mouse and bovine cDNAs encoded
orthologs of a protein that transactivated the steroid hydroxylase promoters in
steroidogenic and nonsteroidogenic cells. As predicted from the cloning strategy
used by the Parker group, the sequences of these cDNAs confirmed that SF-1
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belonged to the nuclear hormone receptor family, with striking homology to the
Drosophila nuclear receptor fushi tarazu factor 1 (Ftz-F1) and the mouse nuclear
receptor embryonal long terminal repeat-binding protein (Tsukiyama et al.,
1992). SF-1 homologs have been identified in a diverse group of species that
includes humans, marmosets, cows, sheep, horses, mice, rats, pigs, tamarind
wallabies, chickens, turtles, salmon, trout, zebrafish, flies, and worms.

II. Developmental Profile of SF-1 Expression

To address the potential roles of SF-1 during mammalian development,
Yayoi Ikeda in the Parker laboratory used in situ hybridization to analyze its
spatial and temporal profiles of expression in mouse embryos (Ikeda et al., 1994).
As anticipated, SF-1 transcripts were detected in the adrenal primordium from
very early stages of its development (approximately embryonic day (E) 10.5). As
the chromaffin cell precursors migrated into the adrenal primordium at � E12.5
to E13.5, SF-1 expression was restricted to the steroidogenic cells in the cortex.
The initiation of SF-1 expression before the onset of steroidogenesis supported
its key role in steroid hydroxylase expression and suggested additional roles in
adrenal development.

In mice, gonadal development first becomes apparent at � E9, when the
intermediate mesoderm condenses into the urogenital ridge, which ultimately
contributes cell lineages to the gonads, adrenal cortex, and kidneys. At this
time, developing testes and ovaries are indistinguishable histologically and
thus are termed indifferent or bipotential. By � E12.5, the fetal testes have
organized into the testicular cords, which contain fetal Sertoli cells and
primordial germ cells, and the surrounding interstitial region, which contains
the Leydig cells. Faint expression of SF-1 was seen in both male and female
embryos from the inception of the indifferent stage (E9.0 –E9.5), persisting
thereafter throughout the indifferent gonad stage. Coincident with formation
of the testicular cords at E12.5, SF-1 expression persisted in the testes but
diminished in ovaries (Hatano et al., 1994; Ikeda et al., 1994). In addition,
SF-1 transcripts were detected in both the interstitial region, where Leydig
cells produce steroid hormones, and the testicular cords, where fetal Sertoli
cells produce anti-Müllerian hormone. SF-1 transcripts also were detected in
the embryonic diencephalon — the precursor to the endocrine hypothalamus
– and the anterior pituitary gland (Ikeda et al., 1994). Taken together, these
findings suggested roles for SF-1 in gonadal development that extended
beyond its effects on the expression of the steroidogenic enzymes and actions
to regulate multiple levels of the hypothalamic-pituitary-steroidogenic organ
axis.
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III. The Roles of SF-1 in Vivo

A. KNOCKOUT MOUSE STUDIES

To address the role of SF-1 in vivo, three groups (Parker, Morohashi, and
Milbrandt) used targeted gene disruption in embryonic stem cells to generate
SF-1 knockout mice. In the Parker laboratory, Xunrong Luo generated the SF-1
knockout mice in collaboration with Drs. Beverly Koller and Ann Latour (Luo et
al., 1994). Consistent with the model that SF-1 was required for adrenal and
gonadal steroidogenesis, SF-1 knockout mice died shortly after birth from
adrenocortical insufficiency and exhibited male-to-female sex reversal of the
external genitalia (Luo et al., 1994; Sadovsky et al., 1995). By analogy with
human subjects with impaired expression of the steroid hydroxylases, the Parker
laboratory anticipated that the adrenal glands of SF-1 knockout mice would be
hyperplastic due to their inability to make glucocorticoids and the consequent
exposure to high levels of corticotropin (ACTH). In a major surprise, shown in
Figure 1, the adrenal glands and gonads were completely absent in newborn SF-1
knockout mice (Luo et al., 1994; Sadovsky et al., 1995). Subsequent studies
showed that the initial stages of adrenal and gonadal development occurred in the
absence of SF-1, followed by their regression at a specific stage of development.
Because their gonads regressed before male sexual differentiation normally
occurs, the internal and external urogenital tracts of SF-1 knockout mice were
female, irrespective of genetic sex.

The gonadotropes of SF-1 knockout mice also had impaired expression of a
number of genes that regulate reproduction, including luteinizing hormone �
(LH-�), follicle-stimulating hormone � (FSH-�), the �-subunit of glycoprotein
hormones (�GSU), and the receptor for gonadotropin-releasing hormone (Ingra-
ham et al., 1994; Shinoda et al., 1995). As shown in Figure 2, these knockout
mice also lacked the ventromedial hypothalamic nucleus (VMH), a hypothalamic
region linked to feeding and appetite regulation and female reproductive behav-
ior (Ikeda et al., 1995; Shinoda et al., 1995). Finally, although the functional
consequences remain to be defined, the SF-1 knockout mice had defects in their
splenic parenchyma (Morohashi et al., 1999).

Guided in part by studies in human subjects with clinical disorders due to
haploinsufficiency of SF-1 or other genes involved in gonadal development (see
below), Ingraham and colleagues examined more carefully the phenotype of
heterozygous SF-1 knockout mice. These studies, which revealed decreased
adrenal volume associated with impaired corticosterone production in response
to stress (Bland et al., 2000), suggested that the level of SF-1 expression may be
very important for optimal adrenal development.

Because the original SF-1 knockout mice are globally deficient in SF-1, they
cannot be used to delineate the roles of SF-1 at specific sites of expression. For
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FIG. 1. SF-1 knockout mice lack adrenal glands and gonads and have female internal genitalia.
The dissected genitourinary tracts of wild-type female (B) and male (D) and SF-1 knockout female
(A) and male (C) mice are shown. Note the absence of adrenal glands and gonads in SF-1-deficient
mice and the presence of oviducts in both males and females. a, adrenal gland; k, kidney; o, ovary;
t, testis; e, epididymis; od, oviduct. [Reprinted from Luo X, Ikeda Y, Parker KL 1994 A cell specific
nuclear receptor is required for adrenal and gonadal development and for male sexual differentiation.
Cell 77:481–490, with permission from Elsevier Science.]
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example, the apparent defect in gonadotrope function could merely reflect the
absence of gonadal steroids. Another limitation of the original SF-1 knockout
mice is their early postnatal death from adrenocortical insufficiency, which
precludes efforts to examine the roles of SF-1 after differentiation has
occurred. Finally, the need to administer exogenous corticosteroids to keep
SF-1 knockout mice alive complicates considerably our ability to use these
mice to assess the role of the VMH in feeding and weight regulation. To
obviate such limitations, the Parker laboratory has begun to use the Cre/loxP
system to produce tissue-specific knockouts of SF-1. Marit Bakke initiated
this process by modifying the SF-1 locus in embryonic stem cells to insert
recognition sites for the bacteriophage Cre recombinase (termed loxP sites)
around the last exon of SF-1, which encodes an essential domain for

FIG. 2. SF-1 knockout mice lack the ventromedial hypothalamic nucleus (VMH). Serial coronal
sections from wild-type (lower left) and -/- male (upper right) and female (lower right) mice were
stained and analyzed histologically. Shown at the upper left is a schematic diagram of anatomical
regions found within these sections. VMH, ventromedial hypothalamic nucleus; DMH, dorsomedial
hypothalamic nucleus; ME, median eminance; Arc, arcuate nucleus; Do, dorsal hypothalamic
nucleus; 3V, 3rd ventricle; mt, mammilothalamic tract. [Modified with permission from Ikeda Y, Luo
X, Abbud R, Nilson JH, Parker KL 1995 The nuclear receptor steroidogenic factor 1 is essential for
the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 9:478–486. Copyright The
Endocrine Society.]
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transcriptional activation and transcription termination sequences. The sec-
ond essential step in the tissue-specific knockout was to generate a Cre
transgene selectively active in a subset of SF-1-expressing cells. Lisa Cush-
man in the Camper laboratory generated a transgenic mouse line in which Cre
expression was directed to the anterior pituitary gland by the 5�-flanking
sequences of the � subunit of glycoprotein hormones (Cushman et al., 2000).
Liping Zhao bred the loxP-modified SF-1 line with the Cre transgenic mice,
ultimately generating mice with pituitary-specific disruption of SF-1.

As shown in Figure 3, the �GSU-Cre/loxP mice selectively lacked SF-1
immunoreactivity in the anterior pituitary (Zhao et al., 2001) but had normal
levels at other sites, including the adrenal cortex and VMH. These mice had
markedly diminished levels of pituitary gonadotropins and exhibited severe
gonadal hypoplasia secondary to impaired gonadotropin stimulation. These
pituitary-specific SF-1 knockout mice demonstrated that the local production of
SF-1 in mice is essential for normal gonadotrope function, strongly supporting a
direct role for SF-1 in gonadotropin gene expression.

B. SF-1 AND HUMAN DISEASE

The sequence of the human gene encoding SF-1 closely resembled that of
the mouse gene (Oba et al., 1996; Wong et al., 1996) and SF-1 expression
during human embryological development closely paralleled that in mice
(Hanley et al., 1999; de Santa Barbara et al., 2000). Thus, it was plausible
that mutations in the human SF-1 gene on chromosome 9q33 (Taketo et al.,
1995) might cause endocrine disease. Many groups looked for SF-1 mutations
in patients with clinical disorders of adrenocortical development and/or
sexual differentiation. To date, only two subjects with diseases associated
with SF-1 mutations have been described, suggesting that SF-1 mutations
occur only rarely. The first subject with a SF-1 mutation presented with
adrenocortical insufficiency and 46,XY gonadal dysgenesis (Achermann et
al., 1999). In contrast to SF-1 knockout mice, which had diminished gonad-
otropin levels, this subject had elevated levels of gonadotropins. The second
subject also presented with adrenocortical insufficiency, but had a 46,XX
karyotype with apparently normal prepubertal ovaries (Biason-Lauber and
Schoenle, 2000). Surprisingly, each patient had one apparently normal SF-1
allele and different mutated alleles that resulted in loss-of-function rather
than dominant-negative effects. This apparent haploinsufficiency raises the
intriguing possibility that gene dosage may be a critical component of SF-1
function in humans. These results further suggest, as seen in other knockout
mouse models, that the phenotypes in patients with SF-1 mutations need not
correlate precisely with observations in SF-1 knockout mice.
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FIG. 3. Pituitary-specific knockout of SF-1 causes hypogonadotropic hypogonadism. The Cre/loxP approach with an �GSU-Cre transgene allowed
us to inactivate SF-1 specifically in the anterior pituitary gland. The top panels show wild-type sections and the bottom panels show sections from mice
with a pituitary-specific knockout of SF-1. Note that immunoreactivities for SF-1 and LH are both virtually abolished and that the testes and ovaries are
markedly hypoplastic secondary to deficient gonadotropin stimulation.
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IV. Regulation of SF-1 Expression and Function

A. REGULATION OF SF-1 EXPRESSION

Relatively little is known about the mechanisms that regulate the expression
of SF-1 within specific cell lineages. To date, there are no published successes
with transgenic promoter analyses, so our insights largely are limited to trans-
fection analyses in cell-culture models. In one published report, a conserved
E-box motif in the 5�-flanking region of the rat gene encoding SF-1 was shown
to regulate promoter activity in transfected mouse Y1 adrenocortical or I-10
Leydig tumor cells (Nomura et al., 1995). Moreover, a protein that interacted
with this E-box motif in gel mobility shift assays was expressed at higher levels
in embryonic testes than ovaries. The same E-box motif was implicated as an
important regulator of SF-1 promoter activity in Sertoli cells (Daggett et al.,
2000) and in Y1 adrenocortical cells and �T3 gonadotropes (Harris and Mellon,
1998). In the latter study, the transcription factor USF-1 was shown to regulate
SF-1 expression. In view of the known developmental roles of basic helix-loop-
helix proteins that bind these E-box motifs, these studies suggest an important
role for basic helix-loop-helix proteins in regulating SF-1 expression in several
cell types.

Other promoter elements implicated in SF-1 promoter activity include a
GC-rich sequence that may represent a binding site for Sp1 and a CCAAT-box
motif (Woodson et al., 1997). The precise roles of these elements in different
tissues remain to be defined. Moreover, the lack of success in the reported
transgenic expression studies suggests that other elements also play important
roles in vivo.

One might predict that distinct mechanisms regulate SF-1 expression in the
adrenal cortex and gonads, which are believed to arise from the same embryonic
lineage (Hatano et al., 1996), versus the anterior pituitary and hypothalamus,
which are contiguous structures that interact reciprocally during development
(Rosenfeld et al., 1996). In support of this, the pituitary transcripts in some
species arise from a transcription initiation site distinct from that used in other
sites (Ninomiya et al., 1995; Kimura et al., 2000). In an effort to explore the
mechanisms that regulate SF-1 expression in vivo, the Parker laboratory recently
used a 50-kb fragment derived from a bacterial artificial chromosome to direct
expression of a green fluorescent protein (GFP) reporter gene in transgenic mice.
As shown in Figure 4, GFP expression in the urogenital ridge was detected at
E9.5, closely paralleling the onset of SF expression during gonadogenesis (Ikeda
et al., 1994). Although GFP expression in the adrenal primordium and VMH also
corresponded to the known expression profile of SF-1, GFP was not expressed in
the anterior pituitary. These results document that 50 kb of 5�-flanking region

27SF-1 MEDIATES ENDOCRINE DEVELOPMENT



suffice to direct regulated expression in most sites but also suggest that additional
regulatory elements are required for activation of the pituitary-specific promoter.

B. MODULATION OF SF-1 ACTIVITY

Limited data also are available regarding the regulation of SF-1 activity in
cells where it is expressed. As a member of the nuclear hormone receptor family,
one obvious possibility is that a ligand regulates SF-1 transcriptional activity in
a manner analogous to many former “orphan” members (Kliewer et al., 1999).
Using a cotransfection assay, Lala and colleagues noted that hydroxycholesterol
derivatives increased SF-1 transcriptional activity by about 10-fold, suggesting
that intermediates in the steroidogenic pathway might modulate SF-1 activity
(Lala et al., 1997). Others, however, have suggested that the effects of oxysterols
are unique to certain nonsteroidogenic cells and may not be relevant to steroi-
dogenic cells (Christenson et al., 1998; Mellon and Bair, 1998). Thus, the precise
role of ligands in SF-1 activity remains to be defined.

In the absence of a clear-cut ligand, others have examined the possibility that
post-translational modifications alter SF-1 transcriptional activity. In their initial
description of the bovine sequence, Morohashi and colleagues noted a potential
phosphorylation site for cAMP-dependent protein kinase. Mellon and colleagues
subsequently reported that recombinantly expressed SF-1 was phosphorylated in
vitro by cAMP-dependent protein kinase (Zhang and Mellon, 1996). Mutation of
the serine residue in the consensus motif did not impair SF-1 function in
transfection assays (Lopez et al., 2001), suggesting that this site is not a key
regulator of SF-1 activity.

FIG. 4. A green fluorescent protein reporter (GFP) transgene is targeted to the embryonic gonad
by SF-1 5�-flanking sequences. A transgene containing 50 kb of 5�-flanking sequences from the
mouse locus encoding SF-1 was placed upstream of coding sequences for enhanced green fluorescent
protein (eGFP). This construct was microinjected into pronuclei to generate a transgenic founder. A
section from an E9.5 embryo was analyzed by fluorescence microscopy, revealing GFP expression in
the urogenital ridge (arrows).
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In a separate line of investigations, the Ingraham laboratory used peptide
mapping to define a site of SF-1 phosphorylation (Ser203) that mapped within a
consensus motif for phosphorylation by mitogen-activated protein (MAP) kinase
(Hammer et al., 1999). They further showed that activating the MAP kinase
pathway increased SF-1 transcriptional activation, while mutation of Ser203
diminished SF-1 activity. Collectively, these findings raise the possibility that
SF-1 function is modulated by posttranslational modification through extracel-
lular signals that act via the MAP kinase pathway.

C. REGULATION THROUGH PROTEIN-PROTEIN INTERACTIONS

Analyses of human patients and knockout mouse models have identified a
number of other genes that play key roles in the development of SF-1-expressing
tissues (for a review, see Parker et al., 1999). It is almost certain that these genes
interact with SF-1 – either in hierarchical cascades of gene regulation or via
protein-protein interactions – to mediate endocrine development. Indeed, a
number of factors have been shown to interact directly with SF-1, including the
Wilm’s tumor related tumor suppressor gene WT-1 (Nachtigal et al., 1998),
GATA-4 (Tremblay and Viger, 1999), Ptx1 (Tremblay et al., 1999), SOX9 (de
Santa-Barbara et al., 1999), and EGR1 (Halvorson et al., 1998; Dorn et al.,
1999). In contrast, SF-1 expression is markedly decreased in the gonads — but
not the adrenal glands — of Lhx9 knockout mice, suggesting that Lhx9 regulates
SF-1 expression in the gonads (Birk et al., 2000). Finally, DAX-1 and SF-1
apparently interact both hierarchically (i.e., SF-1 regulates DAX1 expression)
(Yu et al., 1998; Kawabe et al., 1999) and by direct protein-protein interactions
wherein DAX1 inhibits SF-1 transcriptional activation (Ito et al., 1997; Crawford
et al., 1998).

Besides interactions with other tissue-specific transcription factors, it is
apparent that coactivators and co-repressors are critical modulators of nuclear
receptor transcriptional activity (for a review, see Xu et al., 1999). Predictably,
a number of co-regulators have been reported to interact with SF-1, including
CBP/P300 (Monte et al., 1998), GRIPI (Hammer et al., 1999), SRC-1 (Crawford
et al., 1997a), MBP1 (Kabe et al., 1999), SMRT (Hammer et al., 1999), and
N-CoR (Crawford et al., 1998; Nachtigal et al., 1998). It is possible that
differential interactions with these co-regulators, as well as with the tissue-
specific transcription factors described above, specify the differential expression
of SF-1 target genes in various tissues. An increased understanding of the ways
in which these genes interact to regulate the expression of specific target genes
undoubtedly will provide important new insights into processes of endocrine
development.
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V. Directions for Future Research

The studies summarized here have defined essential roles of SF-1 at multiple
levels of endocrine differentiation and function, particularly within the repro-
ductive axis. Specifically, SF-1 is the first transcriptional regulator shown to play
key roles at all levels of the hypothalamic-pituitary-steroidogenic organ axis.
Despite this considerable progress, a number of important questions remain to be
answered. We still do not completely understand the factors that govern the
expression of SF-1 or that regulate its activity in different tissues. Nor do we
understand the specific roles of SF-1 at the different sites where it is expressed.
As noted earlier, the pituitary-specific knockout of SF-1 has helped establish the
functional importance of SF-1 within mouse gonadotropes. Similar efforts now
are underway to inactivate SF-1 specifically in the VMH (using neuron-specific
promoters), in Leydig/theca cells (using steroid 17�-hydroxylase or Mullerian
inhibiting substance (MIS) receptor promoters), and in Sertoli/granulosa cells
(using the MIS or inhibin promoters). These experiments should provide novel
insights into the specific functions of SF-1 at these sites.

What is the relationship of SF-1 to other closely related members of the NR5
nuclear receptor family? SF-1 most closely resembles another orphan nuclear
receptor, NR5A2, particularly within the DNA-binding domain, suggesting that
these two transcription factors may regulate overlapping target genes. Indeed,
both SF-1 and NR5A2 can activate promoter activity of the small heterodimer-
ization partner (SHP) nuclear receptor (Lee et al., 1999), which is expressed in
the adrenal cortex, liver, and other tissues. Interestingly, NR5A2 transcripts are
expressed at high levels in the corpus luteum of the ovary (Boerboom et al.,
2000), where it may replace SF-1 as a critical regulator of the cytochrome P450
steroid hydroxylases at certain stages of the ovulatory cycle.

While many laboratories have identified a diverse group of SF-1 target
genes, as summarized in Table I, these analyses largely have focused on transient
transfection assays using relatively limited stretches of promoter/regulatory
DNA. These studies may overemphasize the importance of SF-1 in gene
regulation and verification of important roles in vivo ultimately is needed. Among
the SF-1 target genes in Table I, evidence supporting such in vivo roles has been
provided for MIS (Giuili et al., 1997; Arango et al., 1999) and LH� (Keri and
Nilson, 1996). Moreover, important questions about specific roles of SF-1 in
development versus differentiated function may be too subtle to be addressed in
either global or tissue-specific knockouts. Although it was anticipated that SF-1
knockout mice might provide in vivo evidence for the importance of SF-1 in gene
expression, particularly for those genes involved in steroidogenesis, the failure of
the knockout mice to develop the steroidogenic organs and the VMH precluded
such analyses at these sites. Strong evidence for a developmental role of SF-1
came from studies in which forced expression of SF-1 in embryonic stem cells
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TABLE I
Sites of Action and Target Genes for Steroidogenic Factor-1

Ventromedial hypothalamic nucleus N-methyl-D-aspartate receptor

Gonadotropes � subunit of glycoprotein hormones

Luteinizing hormone (LH) �

Follicle-stimulating hormone (FSH) �

Gonadotropin-releasing hormone receptor

Adrenal cortex Cytochrome P450 steroid hydroxylases

3�-hydroxysteroid dehydrogenase

Steroidogenic acute regulatory protein (StAR)

Corticotropin receptor

Scavenger receptor-B1

Hydromethylglutaryl-CoA reductase

DAX-1

Aldose reductase-like protein

Gonads

Leydig cells Cytochrome P450 steroid hydroxylases

StAR

LH receptor

Insulin-like polypeptide 3

Prolactin receptor

Mullerian inhibiting substance (MIS) receptor

Sertoli cells MIS

Inhibin

FSH receptor

Sex-determining region Y (SRY)

SOX9 (SRY box)

Theca and granulosa cells Cytochrome P450 steroid hydroxylases

StAR

Inhibin

Oxytocin
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induced the expression of the cholesterol side-chain cleavage enzyme (Crawford
et al., 1997b). In contrast, analyses of mutant Y1 cells with defects affecting SF-1
function provided evidence for multiple roles in differentiated function. The
Schimmer laboratory showed that a SF-1 mutation was associated with decreased
expression of the ACTH receptor, 11�-hydroxylase, cholesterol side-chain cleav-
age enzyme, and steroidogenic acute regulator protein (StAR) (Frigeri et al.,
2000). Interestingly, the SF-1 defect affected the expression of the ACTH
receptor and 11�-hydroxylase to a much greater degree than cholesterol side-
chain cleavage enzyme or StAR, suggesting further subtleties among the target
genes in their regulation by SF-1.

The ability to disrupt SF-1 expression or function in a temporally specific
manner after development of the steroidogenic tissues is completed would help
to assess the importance of SF-1 in gene expression in a more physiological
context. To this end, transgenic systems in which Cre recombinase is fused to
ligand-inducible proteins (e.g., mutated versions of estrogen receptor or proges-
terone receptor) provide an opportunity to induce Cre pharmacologically by
treatment with synthetic agonists. Such temporally regulated knockouts should
provide a novel approach to examine the roles of SF-1 in this continuum of
differentiated function. A clear delineation of SF-1 specific target genes, an
increased understanding of the factors governing SF-1 function and expression,
and the temporal staging of SF-1 action undoubtedly will provide important new
insights into processes of endocrine differentiation and development.
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