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ABSTRACT

The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF-1R) are members
of the same subfamily of receptor tyrosine kinases. The two receptors phosphorylate many of the
same substrates and activate the same signaling modules, including the mitogen-activated protein
kinase (MAPK) and phosphatidyl inositol 3� kinase (PI3K) signaling pathways. Although the IR and
IGF-1R share some redundant functions in metabolism, cell growth, differentiation, and apoptosis,
they also exhibit distinct physiological roles. Some of these may be due to differences in tissue
distribution, receptor structure, formation of hybrid receptors, or mechanisms of ligand binding.
However, the divergent effects of insulin and IGF-1 also may be explained by specificity in the
intracellular signals generated by insulin and IGF-1. In particular, the IR and IGF-1R are capable of
triggering their own biological responses by using specific or preferential substrates, molecular
adapters, or signaling pathways. In a recent study, we used cDNA microarray analysis to identify
genes differentially regulated by insulin and IGF-1. Mouse NIH-3T3 fibroblasts expressing either the
wild-type human IGF-1R or IR were stimulated with either IGF-1 or insulin, respectively. We
identified 39 genes differentially regulated by insulin and IGF-1. Most of these genes had not been
reported previously to be responsive to insulin or IGF-1. The genes induced by IGF-1 generally were
involved in mitogenesis or differentiation, while the genes found to be induced by insulin did not
conform to any particular category. In a separate study, immortalized breast epithelial cells were
stimulated with IGF-1 and a cDNA microarray analysis was used to generate a profile of IGF-1-
regulated genes. A number of genes known to be involved in angiogenesis were found to be regulated
by IGF-1. These results strongly suggest that this technology may be extremely useful in identifying
groups of genes that are specifically regulated by different ligands and their activated receptors.

I. Introduction

Insulin and insulin-like growth factor-1 (IGF-1) are peptide hormones that
are homologous in primary structure but differ in their physiological effects.
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Insulin, produced by the beta (�) cells of the pancreas, stimulates the uptake of
glucose and amino acids, inhibits gluconeogenesis, and promotes lipogenesis.
IGF-1 is involved primarily in cell growth, survival, apoptosis, and differentia-
tion. Insulin and IGF-1 mediate their biological effects by binding to their
respective receptors, the insulin receptor (IR) and the IGF-1 receptor (IGF-1R).
Although IR and IGF-1R are structurally and functionally similar, targeted gene
knockouts in mice showed that they have both overlapping and distinct physio-
logical roles (Nakae et al., 2001). One of the major areas of interest in this field
is to understand how the specificity of IR and IGF-1R signaling is defined. In this
review, we briefly compare and contrast the IR and IGF-1R signaling pathways
and discuss various mechanisms that could explain the divergent physiological
functions mediated by the two receptors. We then describe recent experiments
using cDNA microarray analysis that have identified specific differences at the
level of gene expression.

II. Structure of the Insulin and IGF-1 Receptors

The IR and IGF-1R are both comprised of two extracellular alpha (�)
subunits containing ligand-binding sites and two transmembrane � subunits
transmitting the ligand-induced signal (Yarden and Ullrich, 1988). More specif-
ically, IGF-1R and IR � subunits consist of three domains: 1) a juxtamembrane
domain, with motifs required for recruiting the major signaling adapter proteins;
2) a tyrosine kinase domain, essential for catalytic activity of the receptor; and 3)
the carboxyl-terminal domain, which has several important residues for IGF-1R
and IR signaling (Figure 1). As a consequence of this high level of homology,
hybrid receptors, comprised of an insulin ��-hemireceptor and an IGF-1 ��-
hemireceptor, can form in tissues and cultured cells expressing both the IR and
the IGF-1R (Federici et al., 1997). Such hybrid receptors may play a role in the
divergent actions of insulin and IGF-1.

A. EXTRACELLULAR (LIGAND-BINDING) DOMAIN

Despite the structural similarities between IGF-1 and insulin, the IR and
IGF-1R have 100- to 1000-fold higher binding affinity for their cognate ligands.
The � subunits have been shown to confer ligand-binding specificity (Schuma-
cher et al., 1991). Some studies using chimeric receptors have shown that the
high affinity of the IR for insulin is determined by regions adjacent to the
cysteine-rich domain (Gustafson and Rutter, 1990; Schumacher et al., 1991). On
the other hand, the high-affinity IGF-1 binding by the IGF-1R is determined by
its cysteine-rich domain within the � subunit.
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B. CYTOPLASMIC DOMAIN

Structural differences in the cytoplasmic domain of the � subunits of the IR
and IGF-1R may contribute to the divergence of these two signaling pathways.
The highest degree of homology between the two receptors is found within the
tyrosine kinase domain (about 84%), whereas the region of greatest divergence
between the IR and IGF-1R is found within the juxtamembrane domain (about
61%) and the carboxyl-terminal domain (about 56%) (Ullrich et al., 1986;
Ullrich and Schlessinger, 1990). Chimeric receptors consisting of the ligand-
binding domain of IR and the cytoplasmic domain of IGF-1R functioned more
like the IGF-1R than the IR (Lammers et al., 1989). Similarly, chimeric IGF-1R
containing the carboxyl-terminal � subunit domain of the IR more closely
resembled the IR than the IGF-1R (Tartare et al., 1994). To eliminate interactions
of ligands with endogenous receptors, other chimeras were generated in which

FIG. 1. The insulin-like growth factor (IGF) family of ligands, binding proteins (IGFBPs), and
receptors (IGF-1R). The IGFs are bound by binding proteins in the circulation and in the extracellular
matrix of the target cells. One mechanism for their release is specific protease effects on the IGFBPs,
which release the IGFs to interact with their specific cell-surface receptors. IGFs may interact with
IGF-1, insulin, and hybrid receptors to affect cell signaling within the target cell.
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the extracellular portion of the neurotrophin receptor was fused to the intracel-
lular portions of IR or IGF-1R (Siddle et al., 2001). These chimeric molecules
were stably expressed in 3T3-L1 fibroblasts (Kalloo-Hosein et al., 1997) or
3T3-L1 adipocytes (Urso et al., 1999,2001) at levels comparable to those of
endogenous IR or IGF-1R and activated by nerve growth factor (NGF). The
TrkC-IR chimeric receptor was more effective in stimulating physiologically
relevant metabolic responses, whereas the TrkC-IGF-1R was more effective in
promoting mitogenesis (Urso et al., 1999). Thus, the intracellular domains of the
IR and IGF-1R are likely to mediate at least part of the observed receptor
specificity.

III. Signal Transduction via IR and IGF-1R

A. COMMON SIGNALING PATHWAYS

Many of the intracellular signaling events mediated by activation of the IR
and IGF-1R are remarkably similar (White, 1994; Cheatham and Kahn, 1995;
LeRoith et al., 1995) (Figure 2). Some of the shared substrates that become
phosphorylated by the IGF-1R and IR include members of the insulin receptor
substrate (IRS) family of proteins (IRS-1, -2, -3, and -4) (Sun et al., 1991; Lavan
and Lienhard, 1993; Patti et al., 1995; Fantin et al., 1998), Gab-1 (Winnay et al.,
2000), and Shc (Pelicci et al., 1992). Upon stimulation by insulin or IGF-1,
tyrosine-phosphorylated IRS and Shc proteins form signaling complexes be-
tween phosphotyrosine-containing binding motifs (YXXM) and Src homology 2
(SH2) domains found in molecules such as growth factor receptor binding-2
protein (Grb2) (Lowenstein et al., 1992; Skolnik et al., 1993) and the p85
regulatory subunit of the phosphatidyl inositol 3� kinase (PI3K) (Backer et al.,
1992). The phosphotyrosine residues on IRS-1 also form docking sites for other
signaling molecules, including Syp (SHPTP2) (Xiao et al., 1994), Fyn (Sun et
al., 1996), Nck (Lee et al., 1993), and Crk (Beitner-Johnson et al., 1996).

By binding to Grb2, IRS proteins couple the IR and IGF-1R to the
Ras/mitogen-activated protein kinase (MAPK) pathway. This pathway regulates
cell growth, differentiation, and proliferation in response to insulin and IGF-1
(Blenis, 1993; Crews and Erikson, 1993). Various protein tyrosine phosphatases
can regulate the activities of the IR and IGF-1R signaling systems.

B. SPECIFICITY

1. Proximal Substrates

To understand the mechanisms involved in the distinct physiological func-
tions of insulin and IGF-1, some investigators searched for specific substrates for

328 JOELLE DUPONT ET AL.



IR or IGF-1R. Najjar and coworkers identified pp120, a plasma membrane
glycoprotein, which is a substrate for the IR but not for the IGF-1R (Najjar et al.,
1997; Soni et al., 2000). Phosphorylation of pp120 is required for its function in
insulin endocytosis (Formisano et al., 1995), bile acid transport (Sippel et al.,
1994), tumor suppression (Kleinerman et al., 1995), and its inhibitory effect on
the mitogenic actions of insulin (Soni et al., 2000). Interestingly, when the
carboxyl-terminus of the IGF-1R is replaced by an equivalent region of the IR,
the chimeric IGF-1R then can bind to and phosphorylate pp120, decreasing its
effect on cell growth (Soni et al., 2000). Mutation of the tyr1316 in the IR, which
is not conserved in the IGF-1R, abrogates the insulin-induced tyrosine phosphor-
ylation of pp120 and its ability to suppress the mitogenic action of insulin (Soni
et al., 2000).

Some of the other substrates of the IR and IGF-1R are differentially
phosphorylated in response to IGF-1 or insulin, indicating that they may mediate
specific effects for both ligands. The molecular adapter Grb14 binds specifically
to the regulatory kinase loop of the IR and inhibits catalytic activity (Kasus-
Jacobi et al., 1998). It recently was shown that Grb14 is three to 10 times less
effective at inhibiting the catalytic activity of the IGF-1R than the IR (Bereziat

FIG. 2. Multiple signaling pathways for the IGF-1 receptors. These include the Ras/Raf/
mitogen-activated protein (MAP) kinase pathways that lead to cell proliferation. For example, the
phosphatidyl inositol 3� kinase (PI3K) pathway also has multiple effects and other pathways such as
the p38 MAP kinase and Jun kinase (JNK) pathways also affect these biological outcomes.
Abbreviations: CT, carboxy-terminal; ERK, extracellular signal-regulated kinase; GDP, guanosine
diphosphate; GTP, guanosine triphosphate; IRS, insulin receptor substrate; MEK, mitogen extracel-
lular kinase; PDK, phosphoinositide-dependent kinase; PH, pleckstrin homology domain; PI, phos-
phatidylinositol; PTEN, phosphatase and tensin homologue deleted on chromosome 10; SHC, Src
homology collagen; SHP, Src homology phosphatase.
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et al., 2002). Rother and coworkers showed that the specificity of signaling may
be explained by the preferential use of different substrates by the IR and IGF-1R
(Rother et al., 1998). In particular, the IR was coupled preferentially to IRS-2,
whereas the IGF-1R was coupled preferentially to IRS-1. This conclusion was
confirmed by ablation of the IRS-1 and IRS-2 genes in mice (Araki et al., 1994;
Tamemoto et al., 1994; Withers et al., 1998).

In Chinese hamster ovary (CHO) cells stably expressing either the human IR
or IGF-1R, it was shown that there are differences in the complement of
SH2-containing proteins recruited to IRS-1 by the two receptors (Amoui et al.,
2001). In particular, the IGF-1R appears to couple IRS-1 preferentially to Grb2,
whereas the IR appears to couple IRS-1 preferentially to the p85 subunit of PI3K
(Amoui et al., 2001). In other recent studies, Olefsky and coworkers showed that
both the IGF-1R and IR can function as G protein-coupled receptors and engage
different G-protein partners. The IGF-1R utilizes G�i, whereas the IR does not
(Dalle et al., 2001). In contrast, the IR signals through G�q/11, whereas the
IGF-1R does not (Imamura et al., 1999; Dalle et al., 2001). Using the two-hybrid
system, Grb10 was found to associate preferentially with the IR in mouse
fibroblasts expressing either the IR or IGF-1R (Laviola et al., 1997). Using the
same technique, the protein 14-3-3� was found to bind to the IGF-1R but not to
the IR (Furlanetto et al., 1997).

Recently, Ligensa and coworkers identified a new PDZ (postsynaptic density
protein-95, disc large, zonula occlusions-1) domain-containing protein (IGF-1
receptor interacting protein-1, IIP-1) that interacts with the C-terminal tail of the
IGF-1R but not the IR (Ligensa et al., 2001). Furthermore, the most distal three
amino acids in the C-terminal tail of the IGF-1R appear to be crucial for the
interaction of IIP-1 with IGF-1R. Indeed, a mutated IR tail carrying the terminal
three amino acids of the IGF-1R is able to bind to IIP-1, whereas mutating any
of the terminal three amino acids in the IGF-1R tail to the corresponding three
amino acids in the IR abolishes the interaction with IIP-1 (Ligensa et al., 2001).
Overexpression of IIP-1 in MCF-7 cells does not affect either IGF-1-dependent
proliferation or IGF-1-mediated protection from apoptosis but significantly
reduces cell motility (Ligensa et al., 2001). Hermanto and coworkers also
identified a novel IGF-1R-interacting molecule called RACK1 (Hermanto et al.,
2002). RACK1 associates specifically with the IGF-1R but not with the IR, both
in yeast and in HEK293T and NIH-3T3 cells overexpressing either the IGF-1R
or the IR (Hermanto et al., 2002). RACK-1 is involved in IGF-1R-mediated
regulation of cell growth and transformation (Hermanto et al., 2002). However,
the interaction of RACK1 with the IGF-1R but not the IR seems to be specific to
certain cell types. Indeed, Kiely and coworkers showed that endogenous
RACK-1 could interact with both the endogenous IGF-1R and IR in Chinese
ovary siemens (COS) cells (Kiely et al., 2002). Nevertheless, these different
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receptor-specific adaptor proteins, particularly IIP-1 and RACK1, might contrib-
ute to the biological specificity of the two hormones.

2. Signaling Pathways

Some evidence suggests that the IR and IGF-1R may phosphorylate the
same substrates but use different signaling pathways to mediate the same or
different biological effects. For example, insulin induces the expression of
vascular endothelial growth factor (VEGF) via the PI3K/Akt pathways in
NIH-3T3 cells overexpressing the human IR, whereas IGF-1 induces VEGF
expression via the mitogen extracellular kinase (MEK)/MAPK pathway in
NIH-3T3 cells overexpressing human IGF-1R (Miele et al., 2000). In rat hepatic
stellate cells, insulin and IGF-1 both stimulate cellular proliferation. However,
both PI3K and extracellular signal-regulated kinase (ERK) are involved in
IGF-1-induced mitogenesis, whereas insulin stimulated mitogenesis through a
PI3K-dependent and ERK-independent pathway (Svegliati-Baroni et al., 1999).
Interestingly, glycogen synthesis was more effectively stimulated by the IR than
by the IGF-1R, although both receptors mediated similar activation of the
Akt/protein kinase B (PKB) protein kinase in hepatocytes and in 3T3-L1
fibroblasts (Park et al., 1999). The insulin-specific stimulation of glycogen
synthesis appears to involve a rapamycin-sensitive pathway in hepatocytes
(Park et al., 1999).

To explain the specificities in the function of the IR and IGF-1R, some
investigators suggested that downstream kinases may mediate the specific effects
of the IR vs. the IGF-1R. For example, Nakae et al. reported that the transcription
factor forkhead homologue to rhabdomyosarcoma (FKHR) is differentially
regulated by insulin and IGF-1 in hepatocytes. The phosphorylation of one
threonine residue in particular (Thr-24) appears to be induced by insulin but not
by IGF-1. As this residue can be phosphorylated by PKB in vitro and PKB is also
activated by IGF-1 in these cells, the authors proposed that a PKB-like kinase
specifically activated by insulin may mediate this effect (Nakae et al., 2000).
More recently, it has been shown that although both insulin and IGF-1 induce
proliferation of murine skin keratinocytes, the action of insulin — but not IGF-1
— is mediated specifically via a protein kinase C delta (PKC�) and involves
activation of the sodium/potassium (Na�/K�) pump (Shen et al., 2001). Thus,
PKC� is a multifunctional serine kinase that represents a divergence point in IR
and IGF-1R signaling. In this same cell type, insulin and IGF-1 stimulate the
translocation of different glucose transporters, although they both increase
glucose uptake (Shen et al., 2001). Thus, insulin and IGF-1 can mediate the same
or different biological responses by utilizing different signaling pathways or
different intracellular mediators.

331IGF-1 RECEPTOR SIGNALING & GENE EXPRESSION MOLECULES



IV. Induction of Specific Genes by the IR and IGF-1R

Some reports have shown that insulin and IGF-1 can act on the same genes
but with different outcomes. For example, in murine skin keratinocytes, insulin
stimulates the expression of differentiation markers, whereas IGF-1 inhibits them
(Wertheimer et al., 2000). Also, in the developing eye lens of the chicken, the
level of delta-crystallin induced by IGF-1 is greater and occurs more quickly than
that induced by insulin (Alemany et al., 1989). It has been shown that low
concentrations of IGF-1 (10 nM) increase the expression of uncoupling protein
3 (UCP-3) by 2-fold, whereas much higher concentrations of insulin (860 nM)
are necessary to obtain the same effect in human neuroblastoma SH-SYSY cells
(Gustafsson et al., 2001).

cDNA microarray analysis recently has been established as a powerful tool
to study the effects of hormones on cellular metabolism and gene regulation on
a genomic scale. Until now, this technology was used to define the effects of
IGF-1 on gene expression in different cell lines (Liu et al., 2001; Oh et al., 2002)
but not to compare the different gene-expression profiles induced by insulin and
IGF-1. We used cDNA microarray expression profiling to identify genes that are
regulated differently by IGF-1 and insulin in mouse fibroblast NIH-3T3 cells
(Dupont et al., 2001b) as a first step towards understanding the molecular basis
for the different functions of the IGF-1R and the IR.

A. DIFFERENTIAL REGULATION OF GENE-EXPRESSION PATTERNS
BY INSULIN AND IGF-1 IN NIH-3T3 FIBROBLASTS

The biological and physiological comparison of the IR and IGF-1R is
complicated by the fact that each ligand can cross-react with the other receptor
and hybrid receptors can form when both receptors are expressed in the same
cells. To circumvent these problems, we have compared the effect of insulin and
IGF-1 in NIH-3T3 fibroblasts overexpressing either human IR (IR cells) (Levy-
Toledano et al., 1993) or human IGF-1R (NWTb3 cells) (Blakesley et al.,
1995,1996). NWTb3 and IR cells were incubated in the presence or absence of
IGF-1 (50 nM) or insulin (50 nM) for 90 minutes, respectively. Of the 2221 genes
on the mouse cDNA microarrays, we found that the expression levels of 30 were
significantly induced by IGF-1 but not by insulin. In contrast, only nine genes
and one expressed sequence tag (EST) were upregulated specifically by insulin
but not by IGF-1 (Tables I and II). We confirmed the IGF-1- and insulin-induced
regulation for 10 of these genes by Northern analysis (Figure 3). The genes that
were identified as regulated by IGF-1 and insulin are involved in various cellular
functions, including proliferation, differentiation, apoptosis, cellular processes,
and metabolism (Tables I and II). Interestingly, most of these genes were not
known previously to be regulated by either IGF-1 or insulin. Indeed, only three
genes — the Jun oncogene (Chiou and Chang, 1992; Monnier et al., 1994), �5
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integrin (Palmade et al., 1994), and the early growth response-1 transcription
factor (EGR-1) (Jhun et al., 1995) — had been reported to be induced by IGF-1.
Furthermore, more than half of the genes upregulated by IGF-1 are associated
with mitogenesis and differentiation, whereas none of the genes specifically
upregulated by insulin are associated with these processes. IGF-1, but not insulin,
induced the expression of two cytokine receptors (interleukin (IL) receptors 3
and 4) that have been reported to be involved in the regulation of cell growth
(Keegan et al., 1994). IGF-1 also induced the expression of glial cell line-derived
neurotrophic factor (GNDF), which is known to be crucial for the development
and the maintenance of various neurons (Airaksinen and Saarma, 2002). IGF-1
increased the expression of the Wee-1-like kinase, which is involved in cell-cycle
progression (Helmbrecht et al., 2000), and the EGR-1 transcription factor, which
is known to enhance cell proliferation. These results suggest that IGF-1-induced
cellular proliferation is a tightly regulated process.

Our study also suggested that insulin and IGF-1 are involved in the apoptosis
process. IGF-1 treatment increased expression of the T-cell death-associated
gene (TDAG)-51 and Daxx (Fas-binding) genes, whereas insulin increased
expression of apoptotic protease-activating factor-1 (APAF-1) and seven in
absentia homologue-1B (SIAH-1B) (Tables I and II). Importantly, IGF-1 is
capable of increasing the expression of antiapoptotic genes such as Twist
(Maestro et al., 1999). Thus, the induction of IGF-1- or insulin-specific genes
could explain the specificity of the biological effects of these two hormones.

B. TWIST EXPRESSION IS SPECIFICALLY INDUCED BY IGF-1

In a separate study, we studied Twist, one of the genes that was specifically
induced by the IGF-1-responsive gene (Dupont et al., 2001a). Twist belongs to
the basic helix-loop-helix family of transcription factors, which play a central
role in cell-type determination and differentiation in both vertebrates and inver-
tebrates (Olson and Klein, 1994). IGF-1 treatment increased the abundance of
Twist mRNA in NWTb3 cells, whereas insulin failed to increase Twist mRNA
in IR cells. The IGF-1-induced increase in Twist expression requires activation
of IGF-1R, since Twist mRNA expression was not induced in response to IGF-1
in parental NIH-3T3 cells, which express few IGF-1Rs, nor in the NKR
(NIH-3T3 cells expressing an IGF-1 receptor with lysine-to-arginine substitu-
tion) cell line, which overexpresses the dominant-negative human IGF-1R (Kato
et al., 1993). We also showed that injection of IGF-1 via the inferior vena cava
increased Twist mRNA expression in muscle. We used various pharmacological
inhibitors and a MEK-1 dominant-negative construct to investigate which
IGF-1R signaling pathway was involved in the induction of Twist gene expres-
sion. These experiments demonstrated that the MEK/MAPK pathway plays a
critical role in IGF-1-induced Twist expression. Using an antisense strategy, we
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TABLE I
Genes That Are Specifically Upregulated by Insulin-like Growth Factor-1 in NIH-3T3 Fibroblasts

Symbol
Clone
number IGF-1 Insulin

Mitogenesis and differentiation

Interleukin 3 receptor, �-chain IL-3R� 445664 5.32 1.23

Colony stimulating factor, macrophage mCSF 634838 4.12 1.32

Glial cell line-derived neurotrophic factor GNDF 425671 3.96 0.80

Integrin �-5 (fibronectin receptor) I�5 476908 3.55 0.94

Early growth response-1 EGR-1 608153 3.65 0.58

Jun oncogene JUN 949554 3.01 1.11

Twist gene homolog TWIST 479367 2.95 1.54

Forkhead homolog 14 FKH-14 541099 2.91 1.08

Wee 1-like protein kinase Wee-1 539548 2.75 1.95

Insulin-like growth factor binding protein 10 IGF-BP10 557055 2.41 1.48

Sex-determining region Y (SRY)-box
containing gene 2

SRY-2 351033 2.39 0.59

Interleukin 4 receptor alpha IL-4R� 721594 2.30 0.80

Mouse mRNA for dbpa murine homolog DBPA 602275 2.29 1.65

Expressed sequence tags, moderately similar
to MAK16 (S. cerevisae)

MAK16 537328 2.27 1.70

Ngfi-A binding protein 2 NGFI-A BP-2 476298 2.31 1.25

MAD (mothers against decapentaplegic)
homolog 5 (Drosophila)

MAD5 551401 2.24 1.49

Early development regulator EDR 616348 2.22 1.67

Ets variant gene 6 (TEL oncogene) TEL 402134 2.21 0.97

Apoptosis

Mus musculus TDAG51 (T-cell death-
associated gene)

TDAG51 694076 9.00 1.52

Mus musculus Fas-binding protein (Daxx) Daxx 736796 5.99 1.55

Cellular processes

Murine mRNA for replacement variant
histone H3.3

vH3.3 618380 3.30 1.39

Kinesin heavy chain member 1A Kin1A 492514 2.83 0.67

Mouse chromatin nonhistone high-mobility
group protein (HMG-I(Y))

HMG-1(Y) 616054 2.64 1.15
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also showed that Twist is positively involved in the antiapoptotic effects of the
IGF-1R. These studies show that a gene that is regulated by IGF-1 receptor
activation may, in turn, regulate the function of the IGF-1 receptor function.

C. IGF-1-INDUCED GENES AND CANCER PROGRESSION

IGF-1-regulated genes were studied in a preneoplastic, immortalized breast
cell line, 184htert. The advantage of utilizing this cell line is that genes may be
identified that are affected by IGF-1 and the IGF-1 receptor signaling pathways
at an early stage in the progression of cancer. These cells were created by using
retroviral technology to introduce the human telomerase reverse transcriptase
gene into normal breast epithelial cells. Of the � 2000 known genes on the
microarray chip, 156 (8%) were regulated by IGF-1. These genes exhibited
various patterns of regulation; whereas some were either up- or downregulated at
early time points, others were regulated in a biphasic manner. The IGF-1-
responsive genes could be subdivided into various categories (e.g., transcrip-
tion factors, cell cycle-related genes, genes involved in cancer progression,
signaling-related genes, extracellular matrix genes, genes related to metabo-
lism). Interestingly, IGF-1 regulated a large number of genes involved in
angiogenesis. Many genes known to stimulate angiogenesis were upregulated

TABLE I
(continued)

Symbol
Clone
number IGF-1 Insulin

Mus musculus mRNA for eRF1 eRF-1 572924 2.34 1.19

DEAD (aspartate-glutamate-alanine-
aspartate) box polypeptide 5

DEAD5 537478 2.22 1.24

Splicing factor, arginine/serine 3 (SRp20) SRp20 595904 2.41 1.69

Metabolism

Murine Glvr-1 mRNA GLVR-1 335579 4.88 1.20

Glycerol phosphate dehydrogenase 1,
mitochondrial

GPDH 351221 2.74 0.91

Others

Nuclear factor erythroid-derived 2, like 2 NF-E2 635541 2.90 0.86

Immediate early protein Gly96 Gly96 579574 2.46 1.13

[Adapted from Dupont J, Khan J, Qu BH, Metzler P, Helman L, LeRoith D 2001 Insulin and
IGF-1 induce different patterns of gene expression in mouse fibroblast NIH-3T3 cells: identification
by cDNA microarray analysis. Endocrinology 142:4969–4975.]
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by IGF-1, whereas inhibitors of angiogenesis such as plasminogen activator
inhibitor-1 (PAI-1) and metalloproteases were inhibited by IGF-1 (Table III).
The effects of IGF-1 on many of these genes — including c-fos, VEGF, Fas
ligand, cyp1A1, cyp1B1, interleukin-1�, and uPA — were validated by other
techniques. Many of the genes that are regulated by IGF-1 are also responsive
to the hypoxia-inducible factor-1alpha (HIF-1�) and cAMP response binding
protein (CREB) transcription factors. Indeed, IGF-1 induced nuclear trans-
location of HIF-1� and the phosphorylated form of CREB, thereby inducing
gene expression.

Thus, this study demonstrated that IGF-1 regulates the expression of
many genes involved in cancer progression. This new information may be
helpful when considering gene targeting for therapeutic uses in the treatment
of cancer.

TABLE II
Genes That Are Specifically Upregulated by Insulin in NIH-3T3 Fibroblasts

Symbol
Clone
ID IGF-1 Insulin

Morphogenesis and development

Mouse alpha-B crystallin mRNA CRY�B 605970 1.56 2.28

Calponin H1, smooth muscle CNNh1 557012 1.27 2.10

Apoptosis

Apoptotic protease activating factor 1 APAF-1 657503 1.33 2.20

Seven in absentia 1B SIAH-1B 618379 1.30 2.04

Cellular processes

Microtubule-associated protein tau TAU 552102 1.36 2.23

Integrin alpha 6 I�6 584662 1.63 2.05

Cytochrome P450 2d10 1.46 2.34

Others

Prolactin receptor PRL-R 520835 0.72 3.74

Delta-aminolevulinate dehydratase DAH 518879 1.53 2.13

Expressed sequence tags, highly similar to
envelope (ENV) polyprotein precursor

539102 1.79 2.13

[Adapted from Dupont J, Khan J, Qu BH, Metzler P, Helman L, LeRoith D 2001 Insulin and
IGF-1 induce different patterns of gene expression in mouse fibroblast NIH-3T3 cells: identification
by cDNA microarray analysis. Endocrinology 142:4969–4975.]
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IV. Conclusion and Future Directions

The purpose of this review is to bring the possible applications of this exciting
new technology to the attention of researchers. While cDNA microarray analysis is

FIG. 3. Confirmation of the specific gene expression by IGF-1 or insulin using Northern blot
analysis. Northern blot analysis was performed using RNA from cells expressing IGF-1 receptors (B3
and C43) or insulin receptors (IR), following stimulation. The specificity of stimulated gene
expression correlated with the microarray results seen in Tables I and II. Abbreviations: CSF,
colony-stimulating factor; EGR, early growth response; GDNF, glial cell line-derived neurotrophic
factor; GLVR, gibbon ape leukemia virus receptor; PRLR, prolactin receptor; TDAG, T-cell
death-associated gene. [Reprinted with permission from Dupont J, Khan J, Qu BH, Metzler P,
Helman L, LeRoith D 2001 Insulin and IGF-1 induce different patterns of gene expression in mouse
fibroblast NIH-3T3 cells: identification by cDNA microarray analysis. Endocrinology 142:4969–
4975. Copyright The Endocrine Society.]
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associated with a number of technical hurdles and experimental flaws, its utility has
enormous potential, if used carefully, with multiple controls and constant validation.
This approach may prove to be useful as a rapid screening test to identify the many
genes that are differentially regulated in different tissues and systems. In particular,
it may lead to the identification of genes not previously known to be affected by a
particular process. Furthermore, in studying the progression of disease states and
variations in gene expression, in various models, it may prove to be the more rapid
and economical method. Numerous other applications undoubtedly will emerge as
more investigators utilize this technology.
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