Autoregulation of the nonsense-mediated mRNA decay pathway in human cells

  1. Oliver Mühlemann1,4
  1. 1Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
  2. 2Science for Life Laboratory, Clinical Genetics Unit L5:03, Karolinska University Hospital, Solna 171 76, Stockholm, Sweden
  3. 3Functional Genomics Center, University of Zurich and Swiss Federal Institute of Technology, 8057 Zurich, Switzerland

    Abstract

    Nonsense-mediated mRNA decay (NMD) is traditionally portrayed as a quality-control mechanism that degrades mRNAs with truncated open reading frames (ORFs). However, it is meanwhile clear that NMD also contributes to the post-transcriptional gene regulation of numerous physiological mRNAs. To identify endogenous NMD substrate mRNAs and analyze the features that render them sensitive to NMD, we performed transcriptome profiling of human cells depleted of the NMD factors UPF1, SMG6, or SMG7. It revealed that mRNAs up-regulated by NMD abrogation had a greater median 3′-UTR length compared with that of the human mRNAome and were also enriched for 3′-UTR introns and uORFs. Intriguingly, most mRNAs coding for NMD factors were among the NMD-sensitive transcripts, implying that the NMD process is autoregulated. These mRNAs all possess long 3′ UTRs, and some of them harbor uORFs. Using reporter gene assays, we demonstrated that the long 3′ UTRs of UPF1, SMG5, and SMG7 mRNAs are the main NMD-inducing features of these mRNAs, suggesting that long 3′ UTRs might be a frequent trigger of NMD.

    Keywords

    Footnotes

    • Received September 5, 2011.
    • Accepted September 19, 2011.
    | Table of Contents