Genes & Genetic Systems
Online ISSN : 1880-5779
Print ISSN : 1341-7568
ISSN-L : 1341-7568
Full papers
Evolutionary dynamics of wheat mitochondrial gene structure with special remarks on the origin and effects of RNA editing in cereals
Koichiro TsunewakiYoshihiro MatsuokaYukiko YamazakiYasunari Ogihara
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2008 Volume 83 Issue 4 Pages 301-320

Details
Abstract

We investigated the evolutionary dynamics of wheat mitochondrial genes with respect to their structural differentiation during organellar evolution, and to mutations that occurred during cereal evolution. First, we compared the nucleotide sequences of three wheat mitochondrial genes to those of wheat chloroplast, α-proteobacterium and cyanobacterium orthologs. As a result, we were able to (1) differentiate the conserved and variable segments of the orthologs, (2) reveal the functional importance of the conserved segments, and (3) provide a corroborative support for the α-proteobacterial and cyanobacterial origins of those mitochondrial and chloroplast genes, respectively. Second, we compared the nucleotide sequences of wheat mitochondrial genes to those of rice and maize to determine the types and frequencies of base changes and indels occurred in cereal evolution. Our analyses showed that both the evolutionary speed, in terms of number of base substitutions per site, and the transition/transversion ratio of the cereal mitochondrial genes were less than two-fifths of those of the chloroplast genes. Eight mitochondrial gene groups differed in their evolutionary variability, RNA and Complex I (nad) genes being most stable whereas Complex V (atp) and ribosomal protein genes most variable. C-to-T transition was the most frequent type of base change; C-to-G and G-to-C transversions occurred at lower rates than all other changes. The excess of C-to-T transitions was attributed to C-to-U RNA editing that developed in early stage of vascular plant evolution. On the contrary, the editing of C residues at cereal T-to-C transition sites developed mostly during cereal divergence. Most indels were associated with short direct repeats, suggesting intra- and intermolecular recombination as an important mechanism for their origin. Most of the repeats associated with indels were di- or trinucleotides, although no preference was noticed for their sequences. The maize mt genome was characterized by a high incidence of indels, comparing to the wheat and rice mt genomes.

Content from these authors
© 2008 by The Genetics Society of Japan
Previous article Next article
feedback
Top