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Analysis of Time Series Correlation.
The Choice of Distance Metrics and Network Structure
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Standard analysis of correlations between companies consists of two stages: calculating the distance matrix
and construction of a chosen graph structure. In the paper the most often used Ultrametric Distance (UD) is
compared with the Manhattan Distance (MD). It is showed that MD allows to investigate a broader class of
correlation and is more robust to the noise influence. Therefore MD was used to construct entropy distance, which
is applied to the analysis of correlation between subset of WIG20 and S&P500 companies. In the analysis three
network structures were used: minimum spanning tree and unidirectional and bidirectional minimum length path.
The results are compared to the standard UD based analysis. The advantages and disadvantages of the analysed
time series distances are outlined.
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1. Introduction

The questions on the form of correlations between time
series are important problems in various sciences. They
are frequently raised in meteorology [1], medicine [2] or
in economy [3, 4, 5]. One of the very basic features of
economy systems is that the firms compete or cooperate
and often they form hidden trusts. Such knowledge may
be crucial when investing on a market, where massive
losses due to a sudden fall of prices in a chosen group
of shares make correlation investigations one of the most
serious research topics [6]. Of course the mutual agree-
ments are usually hidden and the only possible way to
discover them is the analysis of the available data such as
the officially announced information or the stocks market
quotes. Besides the micro economy questions the corre-
lation analysis might be also useful while rising macro
economy issues e.g. measurement of the globalization
process [7, 8]. For years the most popular methods for
investigations of correlations is the Ultrametric Distance
(UD) introduced by Mantegna [9] as an extension of the
portfolio analysis [10] with various applications e.g. [11–
14]. The main disadvantage of the UD is that it measure
only whether the linear correlation exits. It does not ver-
ify hypothesis of the correlation in general. On the other
hand there are no reasons to constrain the correlation
analysis only to the linear case.

Analytical form of the correlations is the not the only
problem in this subject. An other question pertains to
the methodology itself. The UD is very useful but only
in the case where linear correlations are expected. Be-
sides UD is sensitive to the presence of noise (as shown
in Sec.3). But in contrast to classical measurement prob-
lems, e.g. in meteorology or economy, the noise is an
intrinsic part of the data and the truly existing correla-
tions may be hidden by the noise. Therefore a correlation

measure which is not sensitive to noise is necessary to be
found and used.

Within this paper two correlation measures are inves-
tigated and compared (Sec. 2): Ultrametric Distance and
Manhattan Distance. Moreover Manhattan Distance is
used to construct Entropy distance, the latter in the form
of the Theil index based Manhattan Distance. The noise
influence on the distance function is investigated in Sec.3,
while the examples of the distances applications are pre-
sented in Sec. 4.

2. Distance measures

2.1. Ultrametric distance

The Ultrametric Distance UD(A,B)(t,T ) is based on
the Pearson linear correlation coefficient:

corr(t,T )(A,B) =

〈AB〉(t,T ) − 〈A〉(t,T )〈B〉(t,T )√
(〈A2〉(t,T ) − 〈A〉2(t,T ))(〈B2〉(t,T ) − 〈B〉2(t,T ))

, (1)

where the brackets 〈 ... 〉 denote a mean value over a
time window (t− T, t).
The correlation function Eq.(1) is transformed in order
to fulfil the distance axioms:

UD(A,B)(t,T ) =

√
1
2
(1− corr(t,T )(A, B)). (2)

The correlation function Eq.(1) takes the values in the
interval [−1, 1]. The extremes values correspond to the
anticorrelated and linearly correlated time series. The
case corr(t,T )(A,B) = 0 is interpreted as not correlated
data series. However, it should be said in the latter
case that the linear correlation was not found. Eq.(2)
maps the linear space of the series Ln of length n onto
the interval [0, 1] (UD(A,B) : Ln × Ln → [0, 1]). The
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important points are UD(A,B) = 0 → linear corre-
lation, UD(A,B) =

√
2

2 ≈ 0.7 → no correlation and
UD(A,B) = 1 → anticorrelated time series. (The origi-
nal formulation of Mantegna [9] was modified to obtain
mapping on to the interval [0, 1] [15].)

2.2. Manhattan distance

The Manhattan distance known also as a city block
distance or taxicab metric [16] received recently more at-
tention in econophysics investigations [17, 18, 19]. For
the sake of clarity the definition is recalled here. Let con-
sider the time series A,B as vectors than the Manhattan
Distance is defined by Eq.(3) as a sum of the absolute
value of the difference between appropriate coordinates:

MD(A, B) =
n∑

i=1

|ai − bi| (3)

where A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn).
Value of MD depend on the time series length. However
in some applications of time series analysis one has to
compare distances between time series in different time
windows sizes. Therefore the mean Manhattan distance
(MMD) is introduced here:

MMD(A,B) =
1
n

n∑

i=1

|ai − bi| (4)

The MD and MMD can be extended into an entropy
distance measure by prior transformation of the time se-
ries into entropy time series and thereafter application of
MD or MMD. However the entropy estimation in the case
of economy time series is a difficult task. The most pop-
ular entropy formulation i.e. the Shannon entropy [20]
requires knowledge of the probability distribution func-
tion. However, to estimate any PDF one needs a rela-
tively large number of data. On the other hand taking
time window of such a size one has to face two problems:
one is that the length of the analysed time series is short-
ened significantly, another problem is the stationarity of
economy time series. Most of the time series are non-
stationary therefore it might be not possible to find with
reasonable accuracy, the PDF of the given time series.
The difficulties with PDF estimation can be work out by
application of an alternative entropy definition. Within
this paper the Theil index [21] defined by Eq.(5) is used.

ThA(t, T ) =
t∑

i=t−T

(
ai∑t

j=t−T aj

ln
ai

〈A〉(t,T )
). (5)

T is the time window length. The time series A trans-
formed by the Theil index with the time window T will
be denoted as Th(A, T ).

The main advantage of the Theil index is that its value
is calculated directly from the given time series. It is
worth to stress that Theil index (Eq.(5)) transforms the
time series into entropy time series (dependent on the
time window size) than the distance between time series
can be calculated by any distance measures (UD, MD
or MMD). In the examples in Sec.4 the time evolution

of the correlation between stock market prices of chosen
companies is analysed. Since there is no reasons to ex-
pect linear correlation among entropy time series in the
following analysis the Theil index based Manhattan Dis-
tance (ThMD) i.e. composition of the Theil index and
MMD is used and the results compared with the stan-
dard UD analysis. (The interested reader can find the
comparison of the results obtained by application of UD
and MMD to the entropy transformed data in the case
of macroeconomy data in [15].) The definition of ThMD
is given by Eq. (6).

ThMD(A,B)T = MMD(Th(A, T ), Th(B, T )) (6)
It is important to stress that the Theil index require

to define a time window, therefore the application of so-
called moving time window analysis in the case of ThMD
needs to define two different time windows – one to cal-
culate the Theil index, the second to find the distance
between time series in a given time window.

3. Distance measures properties

There is no reason to constrain the correlation anal-
ysis only to the case of the linear function. Therefore
within this paper the general form is assumed (Eq.(7)).
Let denote the time series as A and B and its elements
as ai and bi respectively. The correlation between time
series is understood as the existence of a reversible map
with a one to one correspondence (an injection). Then
the correlation between the time series A and B can be
described as:

f : A → B. (7)
For the sake of correlation comparison the strength of
correlation is introduced. If two functions are consid-
ered: f1 : A → B and f2 : A → C, then the correlation is
stronger if the same changes in origin time series (here A)
results in bigger changes in correlated time series (here
B or C).

The UD is based on the linear correlation coefficient
and it gives negative results in the case of non-linear cor-
relations. The above statement is illustrated by analyti-
cal and numerical examples.

Let X will be a random variable with finite variance
and probability distribution function f(x) symmetrical
with respect to the mean value i.e. f(x) = f(−x), x ∈
(−∞,∞). Then introducing a new random variable Y =
|X| one get corr(X, Y ) = 0, which is contradictory to the
assumption.

Similar results are obtained if the correlation func-
tion Eq.(7) is given by a polynomial. Let consider three
cases: the time series A is generated according to the
formula: ai = i + w(0.5) then the time series are trans-
formed by non-linear functions f1(A) = A2 + w(0.5),
f2(A) = A3 + w(0.5), f3(A) = A4 + w(0.5) and finally
the UD calculated for the pairs: g1(n) = UD(A, f1(A)),
g2(n) = UD(A, f2(A)), g3(n) = UD(A, f3(A)). The re-
sults are presented in Fig. 1. The main observation is
that the distance between generated time series is far
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from zero, so it might be difficult to support the state-
ment that the correlation exists. On the other hand if one
consider the UD distance Eq.(2) as a measure of the cor-
relation strength, than the result of the simulation is even
more embarrassing, because the asymptotic results are as
follows: g1 → 0.125, g2 → 0.26, g3 → 0.2, which means
that in terms of UD the strongest correlation is observed
in the f1 case, which is the lowest degree polynomial con-
sidered here. Besides pointing the weakest correlation as
the strongest UD confuses also the remaining functions
since f1 is the strongest, f3 is weaker, and f2 is the weak-
est. So it does not preserve the polynomial order.

Fig. 1. UD in the case of nonlinearly correlated time
series: g1(n) = UD(A, B) where ai = i + w(0.5), bi =
a2

i + w(0.5); g2(n) = UD(A, B) where ai = i + w(0.5),
bi = a3

i + w(0.5); g3(n) = UD(A, B) where ai = i +
w(0.5), bi = a4

i + w(0.5).

From the application point of view another important
question is the problem of the noise resistance of the dis-
tance measure. Let us assume that a time series is influ-
enced by a noise W with the mean value equal to zero

〈W 〉 = 0. (8)
The noise may influence the correlation either in A, B or
on both time series. Then Eq.(7) takes one of the follow-
ing forms:

f(A) = B + W, (9)

B = f−1(A) + W (10)
or

f(A + W ) = B + W (11)
Eqs. (9)–(11) reflect the dependence problem, which is
in general not trivial and should be treated with caution
especially in the case of non-linear correlations, because
the reverse function not always will exist or may have
some strong constrains. Therefore the problem may be
split into two cases: searching for linear or non-linear de-
pendencies. In the following the noise influence on MD
will be discussed in the case of correlation function with
well defined reverse function f−1 then the analysis per-
formed in the following section are valid in all three cases:
Eqs.(9) – (11). Since the UD is defined to measure linear
correlations the noise influence will be discussed in the

case of linear correlation function f .
Assume that the white noise is present in both time

series
A = Â + WA, B = B̂ + WB (12)

By direct calculations it can be verified that the UD
reads:

UD(A,B)(t,T ) =
1√
2
× (13)

√
1− 〈AB〉 − 〈A〉〈B〉√

(〈A2〉+ 〈W 2
A〉 − 〈A〉2)(〈B2〉+ 〈W 2

B〉 − 〈B〉2)
.

The main feature of the Eq.(13) is that despite assump-
tion of linearly correlated time series the noise W influ-
ences the calculated distance. The noise is present at
Eq.(13) as the mean value of square 〈W 2〉, which in gen-
eral is not vanishing. The problem of noise influence on
the UD is illustrated in Fig. 2. The following cases are
considered: two time series with the same mean values,
two time series with different mean values and time se-
ries linearly correlated (bi = 5 ∗ ai + w(0.5)). The results
are as follows: in the first two cases i.e. time series with
constant mean value the distance between them is ≈ 0.7,
which suggests that there are no correlations. The result
is somehow surprising because one could expect that the
distance measure will find easily seen feature. Moreover
UD in the third case of linearly correlated time series
is also different from zero, which support the observa-
tion that the noise may hide existing correlations (see
the conclusion of Eq.(13)).

Fig. 2. UD for time series with noise: f1(n) =
UD(A, B) where 〈A〉 = 0.5, 〈B〉 = 0.5; f2(n) =
UD(A, B) where 〈A〉 = 0.5, 〈B〉 = 0.0; f3(n) =
UD(A, B) where 〈A〉 = 0.5, bi = 5 ∗ ai + w(0.5).

The noise influence on the results of MD is considered
in the case of time series A,B which satisfy the condition
∀i ai > bi, then MD(A,B) =

∑n
i=1 |ai − f−1(ai)− wi =∑n

i=1(ai−f−1(ai)−wi) =
∑n

i=1(ai−f(ai)). This shows
that the Manhattan Distance in some situations can be
robust to a noise. The same results is obtained in the
case: ∀i ai < bi. From the practical point of view econ-
omy data due to the differences in size of entities very
often satisfy this condition, which make MD very useful.
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4. Network analysis of distance matrices

Most of the correlations analyses are performed to dis-
cover structure of the network between companies or
countries [22–27]. The key point is that the distance ma-
trix obtained by application of any of distance measures
is difficult to analyse directly. Therefore various network
methods are applied. In the following the most popu-
lar Minimum Spanning Tree (MST) and its modification
Bidirectional Minimum Length Path (BMLP) and Uni-
directional Minimal Length Path (UMLP) will be used.
The algorithms generating MST can be found in vari-
ous textbooks e.g. [28]. The best known are Prim’s and
Kruskal’s algorithms [29, 30]. Definitions of BMLP and
UMLP can be found in [7, 8, 31, 32]. For the conve-
nience of the reader the key elements of the algorithms
will be recalled. In the case of Kruskal algorithm of MST
one has to find a shortest edge and add repeatedly the
next shortest edge that does not produce a cycle. The
algorithm stops when there is a path between any two
nodes. BMLP can be considered as a simplification of
MST algorithm. First the pair of the closest neighbours
is searched for and becomes the seed with the first two
ends of the chain. Then the two nodes closest to each end
of the chain are searched for, and the one with the short-
est distance to one of the ends is attached and becomes
the new end on that side of the chain. The procedure is
repeated. The chain grows in two directions. The BMLP
graph does not contain loops, the node degree does not
exceed two, i.e. there are no nodes with more than two
neighbours. In the case of UMLP the algorithms begins
with the choice of the seed of the network. Then the
closest item to the end of the chain is searched for and
attached becoming the end of the network. Nodes are
attached only to the end of the network. Therefore it
grows only in one direction. As in the case of BMLP
there are no loops. The main advantage of UMLP is the
possibility to choose the seed of the network since in var-
ious analyses there is such a “natural” reference point e.g.
stocks market index, or a leader in a given group.

In the following examples two aspects will be illus-
trated: the network analysis of distance matrices and the
comparison between the ultrametric and entropy based
distances. The network analysis of distance matrices ob-
tained for UD and ThMD will be performed for evolving
network in the case of MST, BMLP and UMLP. The fol-
lowing two groups of companies will be analysed:

• WIG20: PEKAO, PKO BP, KGHM, PKN
ORLEN, TPSA, BZ WBK, ASSECO POLAND,
CEZ, GETIN HOLDING, GTC, TVN, PBG,
POLIMEXMS, BRE, LOTOS, CYFROWY POL-
SAT, BIOTON.
The considered time period extends from
05.01.2009 to 30.04.2010, thereby including a
total of 334 quotes. The closing prices are
considered in the analysis.

• S&P 500: ABB Ltd.( ABB), Apple Inc. (AAPL),
Boeing Co. (BA), the Coca-Cola Company (KO),

Emerson Electric Co. (EMR), General Electric
Co. (GE), Hewlett-Packard Company (HPQ), Hi-
tachi Ltd. (HIT), IBM (IBM), Intel Corporation
(INTC), Johnson & Johnson (JNJ), Lockheed Mar-
tin Corporation (LMT), Microsoft Co. (MSFT),
Northrop Grumman Corporation (NOC), Novartis
AG (NVS), Colgate-Palmolive Co. (CL), Pepsico
Inc. (PEP), Procter & Gamble Co. (PG), Tower
Semiconductor LTD. (TSEM), Wisconsin Energy
Corporation Co. (WEC).
In the analysis the closing prices are used. The
considered period: 02.01.2009 – 30.04.2010, which
gives 334 price quotes per stock in total. Data were
obtained from the web page: finance.yahoo.com.

The main advantage of UD is ability to distinguish
clusters of companies formed due to the industry sectors.
This ability is illustrated in Fig. 3. In the generated MST
the following industry clusters can be distinguished:

• food industry: PG, PEP, KO, JNJ

• computer and electronic sector: AAPL, HPQ and
INTC, TSEM, MSFT

• aircraft industry: BA, NOC, LMT.

An additional outcome is the analysis of the network de-
gree i.e. the number of connections to the given node,
which can point out potential leaders here it is EMR,
which is a diversified global technology company.

Fig. 3. MST network generated from the distance ma-
trix of UD in the case of chosen S&P 500 companies..

Besides the static (at a given moment of time) analysis
of the correlation very often the evolution of the system
is investigated. In such a case the analysis requires con-
struction of huge number of networks. Although it might
be possible to analyse them in the same manner as in the
later case an alternative approach is presented. The at-
tention of the reader is directed to another aspect of the
problem – the analysis of correlations of the given group.
The following parameters are analysed: the mean dis-
tance between companies on the network and the results
compared with respect to the type of the distance ap-
plied and the network constructed. The following time
windows are chosen: T = 100 days and T1 = 50 days,
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T2 = 50 days in the case of UD and ThMD respectively.
The results are presented in Fig. 4 and Fig. 5 in the

Fig. 4. The mean distance between the companies of
the chosen subset of WIG20 index in the case of MST,
BMLP and UMLP networks for the time widow T = 100
days and T1 = 50 days, T2 = 50 days in the case of UD
and ThMD respectively.

Fig. 5. The mean distance between the companies of
the chosen subset of S&P500 index in the case of MST,
BMLP and UMLP networks for the time widow T = 100
days and T1 = 50 days, T2 = 50 days in the case of UD
and ThMD respectively.

case of subset companies quoted in WIG20 and S&P 500
respectively. The most striking observation is that the
time evolution of the mean distance between companies
depends on the distance measure applied. The second
feature is that evolution of the mean distance between
the nodes in the case of the ThMD is “richer” than in UD
and allows pointing out several periods increases of cor-
relations as well as decreases. In fact ThMD measures
difference of complexity of the time series in the infor-
mation theory sense, therefore one can speculate that
ThMD reflects changes in general knowledge of the stock
markets players. Another important remark refers to the
types of the network applied. In all considered cases the
less “noisy” results are obtained for MST, however the
outcome of other networks i.e. BMLP and UMLP do not
differ significantly from the MST results. For example in
Fig. 4 the mean distance of MST and BMLP in the case
of UD almost coincide. The same situation is observed
for S&P500 BMPL and UMLP networks in the case of
UD. In the case of ThMD such a close overlap is not ob-
served. However, the mean distance functions have the
extreme points at similar moment of time. The appli-
cation of different network types do not alter the main
results of the analysis i.e. position of the extreme points
as well as the periods of increase or decrease of the mean
distance are preserved.

Summarising the above observations it can be stated
that application of entropy based distance measure gives
significantly different information and its application is
worth consideration if the main goal of the analysis is dif-
ferent than portfolio optimisation. The second important
result is that networks which require significantly less
computational power gives comparable results. There-
fore the BMLP and UMLP networks might be a good
choice in the system of real time computations where
time series of significant length have to be preceded.

5. Conclusions

The main objective of the study was the presentation of
the time series correlation distance measures and the dis-
tance matrix analysis. Four different distance measures
were presented, which can be divided into two groups:
the correlation measures (UD) and Manhattan distance
(MD) with its modifications MMD, ThMD. The main
advantages of UD are:

• It follows from the theory of optimal portfolio.

• Properly classify entities in the context of portfolio
optimization.

• Verifies the linear correlations.

Among the disadvantages of UD the most important are:

• It is sensitive to the presence of noise.

• It fails to compare correlations of different types
i.e. different than linear.

The proposed alternative correlation distance measure
was MD. The main advantages of MD are:

• In the case of time series of significantly different
values it is not sensitive to the noise with the mean
value equal to zero.

• It allows comparing different types of correlations.

• It makes possible to introduce correlation classes.

The main disadvantage of MD is:

• It measure only mutual correlation and do not allow
to decide which company is the leading one.

Besides directly measured distances the entropy based
distances were discussed. Although in the literature the
best known entropy measure is the Shannon entropy this
formulation was not used due to the difficulties in ap-
plication. As an alternative entropy measure the Theil
index was chosen and its features illustrated on the real
data examples. Additionally the network analysis of the
distance matrices was discussed especially the application
of different network type in the case of real data systems.
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