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The thermopower of the junction between normal conductor and s-wave superconductor has been investigated.
For this purpose we have analyzed in detail a simple generalization of the Blonder�Tinkham�Klapwijk theory by
taking into account explicitly an energy dependence of the density of states near the Fermi level. Both linear
and nonlinear thermopowers have been calculated for 3D free electron gas, 3D Fermi liquid, and the case with
Van Hove singularity in the vicinity of the Fermi level. In the linear regime, for all models, the thermopower as
function of temperature has a clear maximum with its position and the value depending strongly on the junction
barrier strength. In the nonlinear regime, we have found very large values of the thermopower (up to 8kB/e) and
strongly asymmetric behavior with respect to the change of the temperature gradient sign.

PACS: 74.45.+c, 74.25.fg, 73.23.Ad

1. Introduction

Tunneling spectroscopy between normal and supercon-
ducting (NS) materials is one of the most e�ective tools to
study the nature of the superconducting state [1, 2]. De-
spite the existence of energy gap in superconductor (SC),
quantum transport is still possible for energies below the
gap value by means of re�ection of the incident electron
as a hole with the opposite charge and momentum, as
predicted by Andreev [3, 4]. Currents �owing across the
junction of an arbitrary transparency were theoretically
analyzed in the seminal paper of Blonder, Tinkham, and
Klapwijk (BTK) [5]. They have discussed a continuous
transition from the tunneling limit to the metallic regime.
The theory was shown to be successful in describing ex-
perimental data of the current�voltage characteristics in
point contacts [6�8].
There were many extensions of this theory, related to

incorporating di�erent nature of superconducting state:
d-wave symmetry of the order parameter [9], the Fulde�
Ferrell�Larkin�Ovchinnikov state [10, 11], hole supercon-
ductivity [12], two-band superconductivity [13], dimen-
sionality of the problem [14, 15], as well as di�erent type
of the non-superconducting material of the junction: fer-
romagnet [16], semiconductor [17], graphene [18]. The
theory was also successfully adapted to the molecular
junctions [19]. The main strength of the BTK approach
is its simplicity and possibility of studying exotic features
in a straightforward manner.
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Nonetheless, the electrical conductance does not pro-
vide the full understanding of the system. For example, it
is important to look into the thermodynamic properties
of particular materials and their electrical response to the
temperature gradient. In general, the problem of ther-
moelectric phenomenon in superconductors and in the
superconductive junctions was studied extensively both
theoretically [20�31] and experimentally [32�34] with an
astonishing precision. Namely, the temperature and the
voltage is measured to the order of mK and µV, respec-
tively. Also, in majority of those papers the thermo-
electric e�ect was analyzed using the Green function ap-
proach. Explicitly, the Eilenberger�Usadel equations [35]
were used, as they seem to be the most e�ective mod-
ern tool in the description of thermoelectric properties
of superconductive systems. However, despite the great
progress achieved in the �eld during last two decades,
the thermopower of such systems is still not fully un-
derstood [36]. In the words of the recent review [36]:
�a signi�cant advance in the theory is required before the
thermopower of mesoscopic proximity-coupled systems is
understood�.

In view of the successes of the BTK theory to describe
conductance of the system it is of interest to study the
thermopower also within this intuitive approach. Al-
though it was employed earlier in some special cases
[12, 37] in its simple form leads to zero thermopower ir-
respectively of the temperature di�erence over the junc-
tion. Here we propose a simple extension of the theory
to include thermodynamic properties of the quantum �u-
ids on both sides of the junction, particularly non-trivial
density of states naturally gives rise to the Seeback e�ect.
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Additionally, as in the case of conductance, this approach
can be further generalized to take into account speci�c
features of some exotic materials (e.g., those with non-
-standard band mass distribution, nontrivial gap symme-
try, realistic dimensionality of the system).
Usually, the e�ect of density of states (DOS) energy de-

pendence in the NS junctions current characteristics is ig-
nored. Even though, it is negligible when conductance is
studied, in the case of the thermopower it has turned out
to be crucial. Therefore this modi�cation to the BTK ap-
proach would complete the picture of the thermoelectric
e�ect in planar NS junctions. The e�ect of the DOS in
the similar manner was also considered earlier by Mazin
[38] in the context of measuring the spin polarization
of the ferromagnet in the ferromagnet�superconductor
junction, and by Kupka [15] in the context of realistic
three-dimensional geometry of NS junction.
Here we present the general framework which allows

to obtain a nonzero Seebeck e�ect within the extended
BTK approach, and applied to the simplest case of the
normal metal�s-wave superconductor junction. Namely,
we include explicitly the e�ect of the non-constant DOS
around the Fermi level and apply it to the following se-
lected situations: 3D free electron gas and 3D Fermi liq-
uid. This inclusion gives rise to the nonzero thermoelec-
tric e�ect, and results in large thermopower value across
the junction. Particular set of parameters, leading to the
large value of the thermopower, can possibly be realized
in heavy fermion systems, where a small Fermi velocity
implies a large value of dimensionless parameter mod-
eling the barrier strength. Additionally, we have also
discussed the e�ect of the logarithmic Van Hove singu-
larity (VHS) present in the vicinity of the Fermi energy
that gives possibility to study the thermopower also in
the case of negative slope of DOS.
The paper is organized as follows. In Sect. 2 we discuss

BTK theory with an explicit inclusion of energy depen-
dent DOS, as well as refer to the previous works on the
thermoelectric e�ect in NS junction. In Sect. 3 we derive
the modi�ed BTK formula for the case of 3D free elec-
tron gas and present results concerning the thermopower,
both in the linear and the nonlinear regimes. Addition-
ally we apply this approach to the Fermi liquid case. In
Sect. 4 we extend our analysis to the case of DOS with
VHS represented by a logarithmic function. Finally, in
Sect. 5, we provide a brief summary.

2. Model and Approach

2.1. Modi�ed Blonder�Tinkham�Klapwijk formalism

The BTK theory [5] describes electrical current
through the NS junction. The starting point are the
Bogoliubov�de Gennes equations [39] describing a two-

-component wave function

(
u

v

)
for s-wave superconduc-

tor with a constant superconducting gap ∆:

(
H ∆

∆∗ −H†

)(
u

v

)
= E

(
u

v

)
, (1)

where the Hamiltonian for free electron gas reads H =

−}2∇2

2m − µ(x) + V (x). The potential, utilized in the
form V (x) = Kδ(x), models the interfacial scattering.
For convenience we also introduce dimensionless barrier
strength Z = K/}vF. In BTK formalism, one considers
incident electron which is scattered by di�erent processes
at the interface with a �nite transparency: it can be re-
�ected, re�ected as a hole (Andreev re�ection � AR)
or transmitted as a quasiparticle. For the states taking
part in the tunneling processes, employing plane wave
approximation, the corresponding multicomponent wave
function is constructed. For simplicity we assume that all
of particles have the same value of the momentum equal
to the Fermi momentum. Applying the standard bound-
ary conditions, i.e., by demanding continuity of the wave
functions and their spatial derivatives at the interface,
one can derive the probabilities of all the processes. Us-
ing those probabilities, following BTK, the net current
formula is obtained in the following form [5]:

INS = 2N(0)evFA
∫ ∞

−∞

{[
1−B(E)]fN(E − eV )

−A(E)fN(E + eV )

−
[
1−A(E)−B(E)

]
fS(E)

}
dE, (2)

where N(0) denotes DOS at the Fermi level, vF is the
Fermi velocity, A is the area of contact, and fN, fS are
the Fermi distribution functions for the NC and SC, re-
spectively. Functions A(E) and B(E) are the tunnel-
ing probabilities of the hole (Andreev) re�ection and the
usual re�ection of the incident electron, respectively. For
simplicity, we also de�ne the transfer probability

T (E) ≡ (1−B)fN(E − eV )−AfN(E + eV )

− (1−A−B)fS(E). (3)

BTK approach has been generalized to realistic
3-dimensional geometry, where T (E) depends also on
the angle of incidence, as shown in a number of papers
[14, 15]. However, the main contribution to the current is
provided for angles of incidence close to zero, e�ectively
similar to one-dimensional geometry (for justi�cation, see
Ref. [15] and references therein).
In the one-dimensional case, the product of the DOS

(∼ ∂k/∂Ek) and the charge carriers velocity (∼ ∂Ek/∂k)
is constant. In more general case, this assumption is
well justi�ed for calculating current�voltage characteris-
tics, but it is insu�cient for more subtle e�ects such as
the thermoelectricity considered here. Also, it is impor-
tant to include the e�ect of energy-dependent DOS in the
study of spin-polarization of the ferromagnet in the case
of the ferromagnet�superconductor junction [38].
In BTK approach [5], electrons contributing to the

current are only those whose velocities are directed to-
wards the junction i.e. those with vx > 0. The cur-
rent (2) through junction of area A can be rewritten in
the spirit of the Landauer�Büttiker approach to the elec-
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tronic transport as

INS = eA
∑
k,σ

vxT (Ek), (4)

with T (Ek) given by (3). In higher-dimension geome-
tries, the energy dependence of DOS does not cancel out
with that of the group velocity. In those cases, we have
to take into account explicitly the product of DOS and
velocity in the net current formula, i.e., start from the
formula

INS = 2eA
∫ ∞

0

dET (E)

∮
vx>0

dS(E)

|∇kE|
vx. (5)

In this formula we treat DOS rather as a �number of
conductance channels�. This concept is based on the as-
sumption of not taking into account the fact that the
hole retracing electron path is on the opposite side of
the Fermi surface and therefore, feels di�erent DOS. We
also neglect the shift of DOS due to non-zero voltage
over the junction, since it rather weakly in�uences the
current characteristics. The resulting integral over the
equi-energy surfaces can be solved by introducing the
explicit energy dependence. This simple e�ect, in turn
modi�es the �nal BTK formula. In Sect. 3 we present our
calculations of the thermopower taking into account the
parabolic dispersion relation in the 3D free electron gas
and linear dispersion relation around the Fermi energy
for 3D Fermi liquid [40].

2.2. Thermopower de�nition

As said above, in the standard BTK approach there
is no nonzero thermopower due to the symmetry in ex-
pression (2) irrespectively of the temperature di�erence.
However, the assumptions introduced in more speci�c
models give rise to the non-zero thermopower in NS junc-
tions. The only works exploring thermoelectric proper-
ties of the NS junction via BTK formalism is that by
Hirsch [12, 37]. He explored thermoelectric phenom-
ena by including the energy dependent superconducting
gap function [12] observed in the hole-superconductivity
model, as well as by considering a more realistic rectangu-
lar barrier of �nite width [37]. The latter case was also
investigated in the case of ferromagnet�superconductor
Andreev point contacts [41]. Here, the source of the ther-
moelectric e�ect in the NS junction is the energy depen-
dence of vx and of DOS, as expressed in (5). This feature
does not alter much the conductivity, but gives rise to the
thermoelectric phenomena.
By keeping the two electrodes at di�erent temperature

or applying voltage, we obtain a non-zero current through
the junction. If both the voltage V and the temperature
di�erence δT are small, we can write that the total cur-
rent as

Ie = L11V + L12δT. (6)

The quantity that measures the thermoelectric e�ect is
the thermopower or the Seebeck coe�cient S, which is
de�ned as the voltage driving to zero the current �owing
in response to the temperature di�erence. This means
that

S ≡ −
(

V

δT

)
I=0

=
L12

L11
. (7)

3. 3D Free-electron-gas case

For 3D free electron gas, the integral in (5) can be car-
ried out analytically and is equal to∮

vx>0

dS(E)

|∇kE|
vx =

k2

}

∫ π
2

−π
2

dθ

∫ π
2

−π
2

dϕ cos2(θ) cos(ϕ)

=
2mπE

}3
. (8)

We have obtained linear energy dependence, which in
turns modi�es the BTK net-current formula in the fol-
lowing manner:

INS =
1 + Z2

eEFRN

∫ ∞

−EF

(E + EF)T (E)dE. (9)

As in the BTK papers [5], we have set the chemical po-
tential equal to zero and thus, in the �nal result have
shifted energies by the Fermi energy. Also, the current is
normalized by the resistance of the NN junction [5] (RN).
Let us note that in all numerical calculations discussed in
the next sections we have taken the Fermi energy equal
to EF = 150∆.

3.1. Linear regime

In Fig. 1 we draw schematically the NS junction. The
black rectangle represents the barrier and the gray re-
gions in it mark the regime of energies, for which the
probability A(E) is large ≈ 1. The dashed line show the
chemical potential, taken as zero of energy. The bias is
applied to the normal metal only. The black lines are
the Fermi distributions on the cold and the warm sides
of the junction. δT is the temperature di�erence across
the junction.

Fig. 1. Schematic diagram showing energetic proper-
ties of the NS junction in the limit of strong barrier,
where the NC is colder than SC. The black rectangle
represents the barrier. Heavy black lines show the Fermi
functions. Dashed line denotes (common) Fermi energy,
and thin lines on the right indicate positions of energy
gap (±∆).

In the linear regime and very small temperature dif-
ference and voltage, δT, V → 0, we expand the Fermi
functions in the Taylor series, which to the �rst order are
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fN = fT−δT/2(E − eV ) = fT (E)− eV
∂f

∂E
+

δT

2T
E

∂f

∂E
,

fS = fT+δT/2(E) = fT (E)− δT

2T
E

∂f

∂E
. (10)

Substituting those forms to Eq. (5) we obtain the explicit
formula for the thermopower

S =

∫
∂f
∂EE(E + EF)(1−B −A)dE

kBT
∫

∂f
∂E (E + EF)(1−B +A)dE

kB
e
. (11)

In Fig. 2 we present temperature dependence of the
thermopower in the linear regime for selected values of
the barrier strength, Z. The tendency is similar to that
obtained by Hirsch [12]. Namely, with the increase of
the barrier strength the thermopower increases. Also,
for su�ciently high barrier strengths we have obtained
a clear maximum of the thermopower as a function of
temperature. The temperature dependence remains sim-
ilar in the nonlinear regime (for larger temperature dif-
ference, δT ), with slightly changed position of the ther-
mopower maximum. What is worth mentioning the char-
acter of the thermopower temperature dependence for
larger barrier strengths qualitatively agrees with the cor-
responding thermopower dependence calculated within
the Usadel-equation framework [27].

Fig. 2. Temperature dependence of the linear ther-
mopower for selected barrier strength values, Z. The
case of 3D free electron gas is considered.

The relevant energies of the junction are schematically
presented as the diagram in Fig. 1. Probability of AR,
A(E), is equal to 1 for energies ±∆, irrespectively of
the value of the barrier strength [5]. Therefore, in the
large barrier strength limit, Z → ∞, the transport is
almost blocked for all energies except for those close to
±∆. Due to this circumstance, we obtain practically zero
thermopower for temperatures less than T = 0.05∆/kB.
In this limit, thermal excitations do not reach the upper
channel of transmission around +∆ and there are fully
occupied states on both sides of the junction for E =
−∆. Once the temperature crosses this limit, we reach
a maximum for the thermopower and subsequently the
part T−1 starts dominating for all barrier strengths. The
highest temperature shown in Fig. 2 is T = 0.2∆/kB, as
we do not take into account the temperature dependence

of the superconducting gap.

3.2. Nonlinear regime

In this section we present numerical results in the non-
linear regime. The thermopower depends on the barrier
strength Z, temperature T , and the temperature di�er-
ence δT . We have obtained asymmetric behavior of the
thermopower (Fig. 3b�d) as a function of temperature
di�erence δT , despite of the symmetric behavior of the
zero-voltage current (Fig. 3a). For the positive sign of the
temperature di�erence, we have obtained large values of
the thermopower (up to 8kB/e) in spite of a relatively
small currents.

Fig. 3. Nonlinear zero-voltage current as a function of
temperature di�erence, δT for selected values of the av-
erage temperature (T ) in the system, for the barrier
strength parameter Z = 1000 (part (a)) and nonlinear
thermopower as a function of the temperature di�er-
ence (δT ) for selected temperatures (T ) of the junc-
tion (around the temperature of the maximal linear
thermopower, cf. Fig. 2) and selected values of barrier
strength parameter Z = 10, 100, 1000 (parts (b), (c),
and (d), respectively). 3D free electron gas is consid-
ered.

The asymmetry can be understood via a simple pic-
ture (cf. Fig. 1). For any temperature di�erence when
at least one of the temperatures is high enough for ther-
mal excitations to reach the transmission channel (+∆),
a relatively large current is �owing through the junction.
Consider the temperature di�erence of a positive sign, so
the thermal smearing in SC is higher than in NC, such as
thermal excitations in the former reach the energy equal
to ∆. The voltage, applied to NC in order to have zero
net current, shifts the Fermi energy in the NC with re-
spect to the Fermi energy in the SC.
Large voltages are required to compensate for ther-

mally induced currents. Therefore, we have a relatively
high thermopower. The opposite happens for the nega-
tive sign of the temperature di�erence. In that situation
even small shift of the Fermi energy in the NC results
in the large change of the �owing current, and one gets
small thermopower.
In a similar manner, we may argue about the behavior

of the thermopower as a function of the barrier strength,
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observed clearly in the linear regime. With the increas-
ing parameter Z, the main transmission channels around
energies ±∆ are narrower. For that reason, we have to
shift the Fermi level by a larger voltage to have zero net
current over the junction.

3.3. 3D Fermi-liquid case

It was shown �rst by Landau [42] that a more accu-
rate description of electrons in metals is the theory of the
Fermi liquid taking into account interaction between par-
ticles near the Fermi energy. This theory assumes linear
dispersion relation in the vicinity of the Fermi level, i.e.

Ek − EF = }vF(k − kF), (12)

with the Fermi velocity vF = }kF/m∗, where kF is the
Fermi momentum and m∗ the enhanced e�ective mass.
Since the Fermi liquid is considered to be more realis-
tic description of electrons in metals, we have calculated
analytically the product of the DOS and velocity within
this model in three dimensions∮

vx>0

dS(E)

|∇kE|
vx =

k2

}

∫ π
2

−π
2

dθ

∫ π
2

−π
2

dϕ cos2(θ) cos(ϕ)

=
(E + EF)

2π

}3v2F
. (13)

The energy dependence is explicitly quadratic and di�er-
ent from the corresponding linear dependence for 3D free
electron gas, cf. Eq. (8). The numerical results, however,
both in linear and nonlinear regime di�er only slightly
from those shown for a 3D free electron gas and we do
not present them here.

4. E�ect of the Van Hove singularity

In Sects. 3 and 4 we have presented a consistent argu-
ment for the importance of the DOS shape on the ther-
mopower in the 3D free electron gas, and in the 3D Fermi
liquid. For the sake of completeness, we have investi-
gated the thermopower within the model, in which we
include in the integrand (5) the form of DOS with Van
Hove singularity (VHS). We model the VHS by logarith-
mic function of energy with �tting parameters taken from
the two-dimensional tight-binding model [43], namely:

N(E) = b1 ln

∣∣∣∣Eb2
∣∣∣∣, (14)

with b1 = −0.04687|t|−1, and b2 = 21.17796|t|, where t
is hopping, taken as |t| = 100∆.
This model corresponds to the assumption of constant

velocity and realistic DOS. In the linear regime, ther-
mopower can be expressed as

S =

∫
∂f
∂EE

(
ln |E−α

b2
|
)
(1−B −A)dE

kBT
∫

∂f
∂E

(
ln |E−α

b2
|
)
(1−B +A)dE

kB
e
, (15)

where α denotes a relative shift (chosen arbitrarily) of
the Fermi energy with respect to VHS. There were ex-
periments in which the Fermi energy was found in a very
close vicinity of the VHS [44, 45], or moved appreciably
relative to it.

Fig. 4. The dependence of the linear thermopower on
the relative shift of the Fermi energy with respect to Van
Hove singularity α for a few values of barrier strength
parameter Z. The average temperature in the system is
taken as T = 0.1∆/kB.

The results of the linear thermopower as a function
of parameter α for di�erent values of barrier strengths
for the �xed temperature T = 0.1∆/kB, are presented in
Fig. 4. The maximum of the thermopower is well pro-
nounced and �xed to the particular value of the shift of
the Fermi energy with respect to the VHS, α = ∆. There-
fore, we have studied the linear temperature dependence
of the thermopower and nonlinear e�ects, particularly
for α = ∆. The behavior of temperature dependence
of the linear thermopower (not shown) is similar as that
for 3D gas and for the Fermi liquid, but the values are
larger than in the previous cases. The interesting feature
of this model is that when the Fermi energy crosses the
VHS, thermopower changes sign. This behavior of the
thermopower is very di�erent from that found by Hirsch
who postulated universality of the thermopower sign for
the hole theory of SC [12]. This observation seems to be
very promising for the future experimental veri�cation.

5. Conclusions

In this paper we have extended the Blonder, Tinkham,
Klapwijk approach [5] to the tunneling spectroscopy be-
tween normal metal and superconducting materials of
s-wave type. Our contribution is to go beyond the ap-
proximation of the constant product of the density of
states (DOS) and the group velocity of charge carriers.
Inspired by the papers of Mazin [38] and Kupka [15] we
have introduced to the BTK current formula an explicit
energy dependence of the product of DOS and the veloc-
ity. For the case of 3D free-electron gas, the product was
found to be linear in energy, whereas within the Fermi
liquid theory, quadratic. This modi�cation virtually does
not a�ect the current�voltage characteristics or conduc-
tance of the NS junction, but it gives rise to the thermo-
electric e�ect. Previously only Hirsch [12, 37] examined
the thermopower in NS junction via BTK approach in
special cases by introducing either the energy-dependent
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superconducting gap function [12] (in the so-called model
of the hole superconductivity) or by invoking the barrier
with �nite width [37].
Both linear and nonlinear regimes of thermopower were

studied for the cases of free electron gas, the Fermi liq-
uid, and for the model with the logarithmic Van Hove
singularity. With the increase of the barrier strength the
thermopower increases. We believe that heavy fermion
systems are promising for the experimental veri�cation of
our theoretical predictions, since low values of the Fermi
velocity should result in high value of the e�ective barrier
strength.
We have found a maximum of the thermopower as

a function of average junction temperature (Fig. 2).
Behavior is qualitatively similar to that obtained via
the Usadel�Eilenberger equations [27]. In the nonlinear
regime, we have investigated additionally its dependence
on the temperature di�erence, where we have found a
spectacular asymmetry of the thermopower with respect
to δT sign inversion (Fig. 3b�d), irrespectively of the
fact that the zero-voltage current is completely symmet-
ric (Fig. 3a). This can be attributed to the asymmetry
of the system, where by applying the voltage one shifts
the Fermi energy of the normal conductor with respect
to the superconducting gap in the superconductor.
The approach can be applied also for the studies of 2D

systems. The integral in (5) leads to either
√
E or E

dependence of the velocity times DOS function for 2D
free electrons and the Landau�Fermi liquid, respectively.
Studies of the thermopower in the case of DOS with

Van Hove singularity intuitively shows that the ther-
mopower has di�erent sign on the negative and positive
slope of DOS (Fig. 4). Similar behavior of the ther-
mopower can be expected for the Kondo insulators. In
those systems one observes a sharp minimum in the DOS
at the Fermi level which is sometimes considered to be
a small semiconducting-like gap between the bands. Let
us note that BTK theory predicts extremely large val-
ues of the barrier strength parameter Z in heavy fermion
systems resulting from the small value of the Fermi ve-
locity (this is also the case for large di�erences between
the Fermi velocities on the both sides of the junction in-
terface [1]). However, this would require an extension
of the present approach to the situation with strongly
correlated electrons [46�48].
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