
Vol. 124 (2013) ACTA PHYSICA POLONICA A No. 4

Complexes of Domain Walls in Ferromagnetic Stripes
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Interaction of domain walls in ferromagnetic stripes is studied with relevance to the formation of stable
complexes of many domains. Two domain wall system is described with the Landau�Lifshitz�Gilbert equation
including regimes of narrow and wide stripes which correspond the presence of transverse and vortex domain walls.
The domain walls of both kinds are characterized with their chiralities (the direction of the magnetization rotation
in the stripe plane) and polarities (the magnetization orientation in the center of a vortex and/or halfvortices),
hence, their interactions are analyzed with dependence on these properties. In particular, pairs of the domain walls
of opposite or like chiralities and polarities are investigated as well as pairs of opposite (like) chiralities and of like
(opposite) polarities. Conditions of the creation of stationary bubbles built of two interacting domain walls are
formulated with relevance to the situations of presence and absence of the external magnetic �eld.
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1. Introduction

Recent growth of the interest in states of many do-
main walls (DWs) in quasi-1D ferromagnets is due to
hopes for miniaturization of information registers and
logical devices based on magnetic nanowires [1�4] and
nanorings [5]. Currently, the main technological e�ort
is focused on the (straight or curved) magnetic nano-
stripes whose spin structure is more complex than de-
scribed within the 1D idealization. It is because nano-
structures of the best quality are obtained in this form
using lithography methods [6]. Mutual interactions of the
DWs in�uence the stability of a record of bits encoded in
a string of the magnetic domains [4].
In the present paper, we study interactions of DWs in

soft-ferromagnetic stripes of big-enough thicknesses (ex-
ceeding many times the magnetostatic exchange length
as discussed in Ref. [7]) within the so-called local ap-
proach to micromagnetics (note that this magnetostatic
exchange length is about 5 nm for permalloys). We in-
clude two regimes of the stripe widths; narrow stripes
correspond to the so-called transverse DWs while wider
stripes to the so-called vortex DWs [8�10]. Here and in
Ref. [7], it is shown that both kinds of the DWs cor-
respond to exact stationary solutions to the Landau�
Lifshitz�Gilbert (LLG) equation in 2D (di�erent realiza-
tions of the cross-tie DW [11�13]), however, their orien-
tations in the stripe plane are distinguished by di�erent
boundary conditions. Both transverse and vortex DWs
are characterized by two features; a chirality (the direc-
tion of magnetization rotation in the stripe plane) which
is clockwise or counterclockwise and a polarity (the di-
rection of magnetization alignment in a vortex/halfvortex
center) which is positive or negative [14, 15]. Pairs of the
DWs of the opposite (like) both the chiralities and polar-
ities are found to constitute exact stationary solutions to
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LLG in the absence of external �eld, hence, they do not
interact. The interactions of the DWs of opposite chirali-
ties and of like polarities (as well as of like chiralities and
of opposite polarities) are studied within a perturbation
calculus previously developed with relevance to DWs in
1D ferromagnetic wire and in critical systems [16]. Eval-
uating the dependence of energy of the two-DW systems
on the distance between the DWs, we analyze the cre-
ation of stationary bound states of two DWs (bubbles).
In the presence of an external magnetic �eld, even DWs

of the opposite chiralities and polarities (of like chirali-
ties and polarities) interact. The �eld-induced collision of
such DWs is studied applying a method developed to 1D
systems in [17]. For this aim, an extension of the (dissi-
pative) evolution equation of magnetization is performed
in a way to describe the dynamics in the limits of large
positive and large negative values of time. The collision
is found to be accompanied by the re�ection of the DWs,
hence, by the creation of stable bubbles of magnetization.
In Sect. 2, the single DW solutions to the LLG equa-

tion in magnetic stripes are analyzed. The interactions
of the transverse and vortex DWs of opposite chiralities
and of like polarities (as well as of like chiralities and of
opposite polarities) are investigated within the perturba-
tion calculus in Sect. 3 while the �eld-induced collisions
of the DWs of opposite (like) chiralities and polarities are
studied in Sect. 4. Main conclusions are summarized in
Sect. 5.

2. Single DW in ferromagnetic stripe

I consider stationary DW solutions to the LLG equa-
tion in 2D

∂m

∂t
=

J

M
m×

(
∂2m

∂x2
+
∂2m

∂z2

)
+ γm×H

+
β1
M

(m · î)m× î− α

M
m× ∂m

∂t
. (1)

The �rst term on the right hand side (r.h.s.) of (1)
relates to the exchange interactions while the second
(Zeeman) term depends on the external magnetic �eld
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H = (Hx, 0, 0), thus, γ denotes the gyromagnetic fac-
tor. The constant β1 determines strength of the easy-axis
anisotropy and î ≡ (1, 0, 0) indicates the long axis of the
stripe. In nanomagnets with structural disorder (permal-
loys are the most popular materials for nanostripes), the
e�ective spin anisotropy is dominated by dipolar interac-
tions, hence, it is a shape dependent and mainly surface
e�ect. Then, for stripes of big enough cross-section, the
bulk anisotropy is negligible, β1 � J/w2, where w de-
notes the stripe width. Since (1) is valid only when the
constraint |m| = M is satis�ed, one writes equations of
the unconstrained dynamics equivalent to (1). Introduc-
ing m± ≡ my ± imz, one represents the magnetization
components using a pair of complex functions g(x, z, t),
f(x, z, t). The relation between the primary and sec-
ondary dynamical variables

m+ =
2M

f∗/g + g∗/f
, mx =M

f∗/g − g∗/f
f∗/g + g∗/f

(2)

ensures that |m| = M . Inserting (2) into (1) leads, fol-
lowing the Hirota method for solving nonlinear equations
[18, 19], to the bilinear reduction of the LLG equation[
− iDt + J(D2

x +D2
z) + αDt

]
f∗ · g

− (γHx + β1) f
∗ · g = 0,[

− iDt − J(D2
x +D2

z) + αDt

]
f∗ · g

+ (−γHx + β1) f
∗ · g = 0,

(D2
x +D2

z)g · g = 0, (D2
x +D2

z)f
∗ · f∗ = 0, (3)

where Dt, Dx, Dz denote the Hirota operators of di�er-
entiation

Dn
xb(x, z, t) · c(x, z, t) ≡ (∂/∂x− ∂/∂x′)nb(x, z, t)
× c(x′, z′, t′)

∣∣
x=x′,z=z′,t=t′

.

For H = 0, stationary single-DW solutions to (3) take
the form

f = 1, g = uekx+qz, (4)

where

k2 + q2 =
β1
J

(5)

and Rek 6= 0. We denote k ≡ k′ + ik′′, q ≡ q′ + iq′′.
Assuming one of the DW ends to be centered at x = 0
(then u = e iϕ), the relevant magnetization pro�le [the
single-DW solution to (1)] is written explicitly with

m+(x, z) =M e i (ϕ+k
′′x+q′′z) sech (k′x+ q′z) ,

mx(x, z) = −M tanh (k′x+ q′z) . (6)

We assume q′′ 6= 0 since, in the case q′′ = 0, the DW
states are similar to DWs in 1D and cannot exist in ab-
sence of the bulk anisotropy [16, 17, 19]. De�ning θ ≡
arctan(q′/k′), following (5), one �nds k′′ = −q′′ tan(θ)
and k

′2 − q
′′2 = β1/{J [1 + tan2(θ)]}. Also, we as-

sume the magnetization alignments on both the stripe
edges to be similar, the ordering is symmetric with re-
spect to the line z = w/2. It leads to the condition
k′′(−wq′/k′) + q′′w = nπ where n = 1, 2, . . . and, �nally,
to q′′ = nπ/{w[1 + tan2(θ)]}.

Additional boundary condition is related to minimiza-
tion of the surface (magnetostatic) energy and it discrim-
inates between di�erent values of ϕ, n, and θ. We eval-
uate the dependence of the energy of the DW on these
parameters using the Hamiltonian H = H0 +HZ , where

H0 =
J

2M

(∣∣∣∣∂m∂x
∣∣∣∣2 + ∣∣∣∣∂m∂z

∣∣∣∣2
)

+
β1
2M

[
M2 − (m · î)2

]
,

HZ = −γH ·m, (7)

(HZ denotes its Zeeman part). Total energy of the DW
E = E0 + EZ + EB is the sum of the bulk energy
E0 + EZ , de�ned by E0(Z) ≡

∫∞
−∞

∫ w
0
H0(Z)dzdx, and

of the boundary energy EB. The contribution EB is de-
termined referring to a theorem by Carbou who proved
that the magnetostatic energy of any ferromagnetic el-
ement of �nite thickness τ ; 1/λ2

∫
S
(m · n)2ds tends to

(1/Λ2)
∫
∂S

(m · n′)2dl with τ → 0 [20]. Here, S denotes
the surface of the bulk ferromagnet and ∂S denotes the
boundary of the base of its solid, n is normal to the mag-
net surface, n′ denotes the unitary vector outward to the
line of the base boundary. The coe�cient Λ2 scales with τ
and with a diameter w following Λ2 ∼ λ2/[τ | log(τ/w)|],
(with relevance to a stripe, w represents its width [9, 21]).
Writing the formula for EB, one has to notice that the
Carbou theorem is not strictly applicable to systems with
open boundaries (in�nite stripes), however, it shows some
tendency in ordering at the stripe edges. In particular,
it indicates that the magnetostatic interactions in �at
magnets induce more than one hard directions of mag-
netization parallel to the main plane. We propose to
e�ectively describe the magnetostatic energy in the form
of an integral over the stripe edge

EB =

∫ ∞
−∞

[
− 2

Λ1
(M2 −m2

x) +
2

Λ2
m2
z

]
z=0

dx, (8)

where, in contrast to [21], the e�ect of anisotropy relat-
ing to the long axis of the stripe is included via the term
depending on Λ1. By analogy to systems with bound-
aries of �nite length that satisfy the Carbou theorem,
this coe�cient is expected to scale with the stripe width
following Λ1 ∼ λ2/w. More detailed estimation of EB is
performed in Appendix A and in Ref. [7].

Inserting (6) into the Hamiltonian (7), one arrives at

E0(θ, n) = 2JMw

√
β1
J

[
1 + tan2(θ)

]
+
π2n2

w2
. (9)

Estimating EB, we divide it into two parts EB = EB1 +
EB2;

EB1(θ, n) ≡ −
2M2

Λ1

∫ ∞
−∞

sech2

(
nπx

w
[
1 + tan2(θ)

])dx,

EB2(ϕ, θ, n) ≡
2M2

Λ2

∫ ∞
−∞

sin2

(
ϕ− nπ tan(θ)x

w
[
1 + tan2(θ)

])

× sech2

(
nπx

w
[
1 + tan2(θ)

]) dx. (10)
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Fig. 1. DW con�gurations: (a) a transverse DW,
(b) a vortex DW. In the upper draws, arrows indicate
magnetization alignment.

The minimization of EB2(ϕ, θ, n) leads to ϕ = 0, π inde-
pendently of other parameters of the DW. It corresponds
to the presence of halfvortices (halfantivortices) at the
stripe edges (as shown in Fig. 1). In the regime of narrow
stripes w/τ ≈ 1, Λ2 � Λ1 (1/Λ2 is small, thus, E0 dom-
inates over EB), via minimization of E0(θ, n) the small-
est possible value of n is preferable while the minimiza-
tion of both the energy components E0(θ, n), EB(0, θ, n)
leads to the preferred values of the angle θ = 0, π. In-
crease of the stripe width w with �xed thickness τ re-
sults in the transition to the regime Λ2 > Λ1. Fur-
thermore, as mentioned previously, for soft-magnetic al-
loys, β1 is negligibly small, β1 � J/w2, thus, from (9),
E0(θ, n) = E0(n) is independent of w, and EB becomes
comparable to E0. For this case, via the minimization of

EB1(θ, n), the biggest possible value of tan2(θ) and the
smallest value of n are preferable, whereas, for θ 6= 0, π,
the minimization of EB2(0, θ, n) indicates big values of n
to be preferable. Hence, the transition from the DW state
of n = 1, θ = 0, π to a state of n = 2, θ 6= 0 takes place
with increase of w. For n = 2, the condition tan2(θ) > 1
has to be satis�ed in order to EB(0, θ, 2) < EB(0, 0, 1).
The state n = 1 and θ = 0, π corresponds to k′′ = q′ =

0, |q′′| = π/w, |k′| =
√
π2/w2 + β1/J and it is called a

transverse DW. With relevance to the state n = 2, we
take β1 = 0 (the shape anisotropy does not a�ect the dy-
namical equation while it is completely included in the
boundary condition, the minimization of EB), and |θ| to
be close to its in�mum |θ| ≈ π/4. The resulting magneti-
zation structure corresponds to |q′| ≈ |q′′| ≈ |k′| ≈ |k′′| ≈
π/w and one calls it a vortex DW. The polarity of vor-
tex (transverse) DW (the magnetization orientation in
the center of vortex/halfvortex, parallel or antiparallel)
is determined by value of ϕ while sgn(q′′) determines its
chirality (the magnetization rotation in the stripe plane,
clockwise or anticlockwise to y axis).

3. Interaction of static domain walls

Let us analyze the interaction of transverse (vortex)
DWs within a perturbation calculus developed earlier
with relevance to the interactions of DWs in 1D ferro-
magnet [16]. In the present section, we focus on the sys-
tems whose interacting DWs are of opposite chiralities
and of like polarities (or of like chiralities and of opposite
polarities) visualized in Fig. 2. we refer to the remaining
cases (the DWs of opposite chiralities and polarities as
well as the DWs of like chiralities and polarities) in the
next section.

Fig. 2. Scheme of the magnetization layout in double-
-DW con�gurations: (a) pair of transverse (parallel vor-
tex) DWs of opposite chiralities and of like polarities,
(b) pair of transverse (parallel vortex) DWs of like chi-
ralities and of opposite polarities.

Locally, in the vicinity of the center of j-th DW (j =
1, 2), one can write the magnetization in the form

m(x, z, 0) = m(j)(x, z) + δm(j)(x, z), (11)

where m(j) denotes the stationary single-DW solution
to (1):

m
(j)
+ (x, z) =M e i{ϕj+δj [k

′′(x−x0j)+q
′′z]}

× sech (σj [k
′(x− x0j) + q′z]) ,

m(j)
x (x, z) = −M tanh (σj [k

′(x− x0j) + q′z]) , (12)

while δm(j) denotes a perturbation due to the presence
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of another DW. Here δ1 = δ2 = ±1, |σj | = 1, σ1 = −σ2,
and, for k′ > 0, σj = 1 corresponds to DW of the head-
-to-head type while σj = −1 to the tail-to-tail type. The
phases satisfy ϕ1 = ϕ2 or ϕ1 = ϕ2 ± π. We refer to the
case δ1 = δ2 and ϕ1 = ϕ2 as to the pair of walls of op-
posite chiralities and of like polarities while to the case
δ1 = δ2 and ϕ1 = ϕ2± π as to the walls of like chiralities
and of opposite polarities. In terms of vortex DWs, we
focus our attention on the interaction of mutually par-
allel vortex DWs while taking the single DWs pro�le in
the form (12) excludes its use to non-parallel DWs. The
non-parallel vortex walls overlap at one edge of the stripe
much stronger than at the second edge, thus, an e�ective
description of their interaction can be performed with 1D
model of Ref. [16] applied to the stripe-edge magnetiza-
tion. In order to ful�ll the constraint |m| = M , we take
the perturbation of an initially static DW state in the
form

δm(j) =

(
±m

(k)
x

M
− 1

)
m(j) ± m

(j)
x

M

(
0,m(k)

y ,m(k)
z

)
∓ 1

M

(
m(k)
y m(j)

y +m(j)
z m(k)

z , 0, 0
)
, (13)

where k 6= j, which leads to

mx = ± 1

M

[
m(1)
x m(2)

x −
1

2

(
m

(1)
+ m

(2)
− +m

(2)
+ m

(1)
−

)]
,

m+ = ± 1

M

(
m

(1)
+ m(2)

x +m
(2)
+ m(1)

x

)
. (14)

The plus and minus relate to the bubble magnetization
parallel and antiparallel to x-axis, respectively. We stress
that (14) is irrelevant to the case of DWs of opposite
(like) chiralities and polarities, δ1 = −δ2, since, for this
case, |m| = M was not satis�ed. In order to satisfy

|m| = M , the product m
(1)
+ m

(2)
− should take real values.

Moreover, with relevance to vortex DWs, this condition
is ful�lled for discrete values of a = nπ only, where n is
an integer. The perturbation of states of the interacting
DWs should be small. According to (13), this condi-
tion is ful�lled when the interacting DWs are far-enough
from each other [functions of the r.h.s. of (13) satisfy

| ±m(k)
x /M − 1|, |m(k)

y /M |, |m(k)
z /M | � 1 if the distance

between the walls is larger than their width].

With relevance to the transverse DWs, insertion
of (14), with |q′| = |k′′| = 0, into the Hamiltonian (7)
and integration over the stripe area {x ∈ (−∞,∞),
z ∈ [0, w]} leads to the following dependence of the en-
ergy of a temporal static state of the DW pair on the
distance of separation of the walls

E0(a) =
M

2
wJk′I±(a, 0)

=
M

2
w

√
Jβ1 +

J2π2

w2
csch2∓1(a/2)

× sech2±1(a/2) [−2a+ sinh(2a)] , (15)

where a ≡ k′(x02 − x01), and I±(a, θ) represent integrals
given in Appendix B. The upper signs correspond to the

pair of transverse DWs of opposite chiralities and of like
polarities, the case ϕ1 = ϕ2, while the lower signs cor-
respond to the pair of transverse DWs of like chiralities
and of opposite polarities, the case ϕ1 = ϕ2 ± π. Up to
a multiplicative constant, the above energy dependences
on a are similar to the ones of the pairs of DWs (of oppo-
site chiralities and of like chiralities, respectively) in 1D
ferromagnet [16].

For parallel vortex DWs, inserting (14), with |q′(′′)| =
|k′(′′)| = π/w and β1 = 0, into the Hamiltonian and in-
tegrating it over the stripe area, one arrives at

E0(a) =MwJk′I±(a, 1) (16)

= πMJ
1

6
csch5(a)

{[
36a cosh(a)− 12a cosh(3a)

− 24 sinh(a)− 5 sinh(3a) + 3 sinh(5a)
]

∓ 24 cos(a) sinh2(a) [−2a+ sinh(2a)]

− cos(2a) [24a cosh(a)− 18 sinh(a)− 2 sinh(3a)]
}
,

where upper signs correspond to the pair of DWs of op-
posite chiralities and of like polarities while lower signs to
the pair of DWs of like chiralities and of opposite polari-
ties. The energy dependences on the DW separation dis-
tance (15), (16) are plotted in Fig. 3a and b, respectively.
Extrema of E0(a)+EZ(a) correspond to stationary states
of DW pairs; stable (minima) or unstable (maxima) ones.
The character of extremum (minimum or maximum) of
the function E0(a) at a = 0 indicates that the interaction
of the (transverse or vortex) DWs of opposite chiralities
and like polarities is attractive when their separation dis-
tance is short while the interaction of DWs of like chiral-
ities and opposite polarities is repulsive in this case. To
be precise, here, we call the distance between DWs short
when it is close to their width since the perturbation cal-
culus is applicable to |a| > 1.

Fig. 3. Energy of a pair of DWs with dependence on
the distance of their separation: (a) transverse DWs,
(b) vortex DWs. Solid line � DWs of opposite chiral-
ities and of like polarities, dotted line � DWs of like
chiralities and of opposite polarities.

In the case of presence of an external longitudinal �eld
Hx 6= 0, the energy dependence on the distance of DW
separation E0(a) + EZ(a) deviates from these in Fig. 3a
and b due to non-zero Zeeman term, however, such a de-
viation is small for a close to zero, similar to one in Fig. 1
of Ref. [16]. Moreover, the Zeeman term is arbitrarily
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small when restrict considerations to weak-enough exter-
nal �eld. With this restriction, due to attractive inter-
action, a (�eld-induced) collision of transverse or vortex
DWs of opposite chiralities and of like polarities is ex-
pected to result in their mutual annihilation, according
to simulations for the transverse DWs [22, 23]. Corre-
spondingly, due to repulsive interaction, the collision of
transverse or vortex DWs of like chiralities and of oppo-
site polarities leads to their mutual re�ection. Both the
DW annihilation and the bubble nucleation have been
observed in ferromagnetic nanorings [24, 25].
Unlike in the case of transverse DWs, the interaction

of vortex DWs changes its character from attractive to
repulsive (or vice versa) with increasing the distance be-
tween the DWs.

4. Field-induced collision of domain walls

In the present section, the interaction of DWs of oppo-
site chiralities and polarities (as well as of like chiralities
and polarities) is analyzed. It is shown that such pairs
of DWs create static bubbles of magnetization which are
exact stationary solutions to the LLG equation. Hence,
the walls do not interact in absence of an external �eld.
The application of a magnetic �eld in the opposite direc-
tion to the bubble magnetization induces motion of both
the DWs towards each other and, eventually, their colli-
sion. It is accompanied by an interaction of the DWs due
to a dynamical deformation of them which cannot be de-
scribed in the framework of the above used perturbation
calculus.
Stationary two-DW solutions to (1) have been found

in the absence of anisotropy, for β1 = 0. Under this
condition, for H = 0, inserting the ansatz f = 1,
g = uek1x+q1y ± uek2x+q2y into (3), one �nds the rela-
tions

k21(2) + q21(2) = 0, k1k2 + q1q2 = 0. (17)

Let kj ≡ k′j + ik′′j , qj ≡ q′j + iq′′j . For double-DW so-
lutions, k′1 = −k′2 = ±π/w, the above conditions lead
to q′′1 = −q′′2 , |q′′1(2)| = π/w, k′′1(2) = q′1(2) = 0 for

transverse DWs, and to k′1k
′′
2 = k′′1k

′
2, q

′
1q
′′
2 = q′′1 q

′
2,

|k′′1(2)| = |q
′
1(2)| = |q

′′
1(2)| = π/w for vortex DWs.

Concerning nonstationary DW solutions to the LLG
equation for H 6= 0 and α 6= 0, we notice that solitary-
-wave solutions to the LLG equation are relevant in the
limit of large positive values of time only, whenever mag-
netostatic e�ects which lead to the Walker breakdown
(an easy-plane anisotropy in the case of 1D ferromagnet)
are included [26�28]. Hence, studying the dynamics of a
pair of DWs which are stationary at the initial moment,
one cannot avoid an e�ect of non-adiabatic switching the
magnetic �eld on. On the other hand, standard approach
to the problem of soliton collision is based on the anal-
ysis of asymptotics of two soliton solutions in the limits
t→ ±∞, e.g. it has been used with relevance to collisions
of spontaneously propagating topological solitons (DWs)
in 1D ferromagnet (in absence of external �eld and dis-
sipation) [18]. In the presence of dissipation this method

fails since solutions to dissipative equations of motion
become unphysical in the limit of large negative values
of time, because of divergence of energy in this limit.
In particular, the Zeeman energy of any ferromagnetic
stripe diverges with t → −∞ whereas domains magne-
tized parallel (antiparallel) to the magnetic �eld grow
(diminish) with time. In view of the purpose of studying
�eld-induced collisions, these facts motivate extension of
the dynamical system (3) within a formalism applicable
to the limits of large positive and negative values of time.

The method of extension of the dynamical system has
been developed in Ref. [17]. It is based on a Bate-
man idea of doubling the number of degrees of freedom
when including the dissipation into the standard La-
grange formalism (with relevance to damped harmonic
oscillator) [29]. We change secondary dynamical Eqs. (3)
replacing g, g∗, f , f∗ with novel �elds of the correspond-
ing set g1, g

∗
2 , f2, f

∗
1 and of the set of their c.c. in a way

that the resulting extended system of the equations of
motion

αDtf
∗
1 · g1 − γHxf

∗
1 · g1 = iDtf

∗
1 · g1,

(D2
x +D2

z)f
∗
1 · g1 = 0,

(D2
x +D2

z)g1 · g1 = 0, (D2
x +D2

z)f
∗
1 · f∗1 = 0 (18)

and of their conjugates [that di�er from (18) by the sign
of the dissipation constant α]

−αDtf
∗
2 · g2 − γHxf

∗
2 · g2 = iDtf

∗
2 · g2,

(D2
x +D2

z)f
∗
2 · g2 = 0,

(D2
x +D2

z)g2 · g2 = 0, (D2
x +D2

z)f
∗
2 · f∗2 = 0 (19)

is, in a formal sense, symmetric with respect to the rever-
sal of the arrow of time (although, dissipative dynamics
of any physical system is irreversible). Comparing (18)
and (19), one sees that g2(x, z, t) [f2(x, z, t)] can be ob-
tained from g1(x, z, t) [f1(x, z, t)] via changing the sign of
its parameter α. Upon the change t→ −t, the system of
the novel equations transforms into itself if one accompa-
nies this operation by the transform of the novel dynam-
ical variables g1(2) → f2(1), f1(2) → −g2(1). The above
trick is an analogous construction to classical and quan-
tum formalisms for description of dissipative systems in
the whole length of the time axis despite the divergence
of excitation energy in the limit of large negative values
of time (non-equilibrium Green functions, thermo-�eld
dynamics, rigged Hilbert space) [30], which are all based
on the concept of Bateman. Equations (18) and their c.c.
determine the magnetization dynamics for large positive
values of time (in particular, for t→∞). Therefore, the
magnetization vector should be expressed with the func-
tions g1, g

∗
1 , f1, f

∗
1 in the relevant time regime. Writing

the magnetization in the form

m+ =
2M

f∗1 /g1 + g∗1/f1
, mx =M

f∗1 /g1 − g∗1/f1
f∗1 /g1 + g∗1/f1

(20)

ensures that their components satisfy |m| = M , mx =
m∗x, and they reproduce (2) for α = 0. In the limit
t → −∞, similar to the quantum �eld theory approach,
the response of the system is determined with novel �elds.
In this limit, one can analyze the evolution of the mag-
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netization with vector m̃ de�ned as

m̃+ = − 2M

f∗2 /g2 + g∗2/f2
, m̃x = −M f∗2 /g2 − g∗2/f2

f∗2 /g2 + g∗2/f2
.

(21)The single-DW solution to (18), (19) is of the form
f∗2 = e−lt/2, g1 = uekx+qz−lt/2, which leads to the mag-
netization pro�le

m+(x, z, t) =M e i [ϕ+k
′′(x−x0)+q

′′z−l′′t]

× sech (k′(x− x0) + q′z − l′t) ,
mx(x, z, t) = −M tanh (k′(x− x0) + q′z − l′t) , (22)

and represents the translationally and rotationally mov-
ing transverse DW of |k′| = |q′′| = π/w, |k′′| = |q′| = 0 or

vortex DW of |k′(′′)| = |q′(′′)| = π/w. Here, l′ ≡ Re l =
γHxα/(1+α

2), l′′ ≡ Im l = γHx/(1+α
2). The nonzero l′′

corresponds to the DW evolution in strong enough mag-
netic �eld that exceeds signi�cantly the Walker break-
down value |Hx| � HW [31, 32]. Below the Walker
breakdown, in a weak external �eld, the rotation of the
magnetization about x axis is suppressed by the min-
imization of surface energy (a strong e�ective biaxial
anisotropy [33]). The relevant dynamics is described with
a di�ering from (1) primary evolution equation and dif-
fering from (18), (19) secondary equations which are ob-
tained by replacing the l.h.s. of (1) and r.h.s. of (18), (19)
with zero [7, 17]. In this weak-�eld regime, l′ = γHx/α,
l′′ = 0. In the intermediate region, above the Walker
breakdown |Hx| > HW, the �eld-induced motion of the
DW is accompanied by a dynamic transformation of its
structure [34]. The DW oscillatory changes between the
transverse and vortex ones [35]. My further considera-
tions focus on the regime |Hx| < HW, then the motion
of a single DW is a simple translation.

For H 6= 0, two-DW solution to modi�ed (by taking
their l.h.s. equal to zero) Eqs. (18), (19) takes the form

f∗1 = eγHxt/(2α),

g1 = u(ek1x+q1z ± ek2x+q2z)e−γHxt/(2α),

f∗2 = e−γHxt/(2α),

g2 = u(ek1x+q1z ± ek2x+q2z)eγHxt/(2α), (23)

where plus (minus) corresponds to states of a pair of the
DWs of like (opposite) chiralities and polarities, while the
parameters k1(2), q1(2) satisfy the conditions (17). Hence,
for k′1 = −k′2 and q′1 = −q′2 (parallel DWs); k′′1 = −k′′2
and q′′1 = −q′′2 . It should be emphasized that the above
single-DW and double-DW solutions to (18) satisfy the
original system (3).

Let

ηj(x, z, t) ≡ σjπ/w(x− x0j + θz)− γHxt/α,

η̃j(x, z, t) ≡ σjπ/w(x− x0j + θz) + γHxt/α,

ξj(x, z) ≡ δjπ/w [θ(x− x0j)− z] , (24)

with σ1 = −σ2 = 1, δ1 = −δ2, |δ1(2)| = 1, and θ = 0 for
transverse DWs while θ = 1 for vortex DWs. For Hx > 0
and ηk � ηj ≈ 0, here k 6= j (k, j = 1, 2), we �nd the
distant-future limit of the magnetization (20)

lim
t→∞

m+ = m
(j)
+ ≡ (±1)j−12M v eηj e iξj

1 + e2ηj
,

lim
t→∞

mx = m(j)
x ≡M

1− e2ηj

1 + e2ηj
. (25)

Identifying the parameters x0j with the DW-center po-
sitions x01 = −x02 [ln(u) ∝ σ1 + iδ1θ = −σ2 − iδ2θ],
We introduce the restriction on v; v = 1 or v = −1.
The magnetization pro�les (25) describe the motion of
well separated DWs of the type presented with (22) and
correspond to the limit t → ∞ of the DW solutions to
the LLG equation in 2D for |Hx| < HW by Slonczewski
[28, 36].

In the distant-past limit, we describe the magnetiza-
tion evolution using the �eld m̃. Following (21), for
η̃j � η̃k ≈ 0 and j 6= k,

lim
t→−∞

m̃+ = m̃
(j)
+ ≡ −(±1)k−12M

v eη̃k e iξk

1 + e2η̃k
,

lim
t→−∞

m̃x = m̃(j)
x ≡ −M

1− e2̃ηk

1 + e2η̃k
. (26)

Considering the collision of DWs which are in�nitely dis-
tant from each other at the beginning of their evolu-
tion, we determine the magnetization dynamic in the
limit t → −∞, via inverting the propagation direction
of the kinks of m̃ and reversing the arrow's head of

the �eld vector m̃. Utilizing the properties m̃
(j)
+ (x +

x0k, z, 0)e
iξk(−x,−z) = m̃

(j)
+ (−x + x0k,−z, 0)e iξk(x,z),

m̃
(j)
x (x + x0k, z, 0) = −m̃(j)

x (−x + x0k,−z, 0), for ηj �
ηk ≈ 0, (j 6= k), we arrive at

m+(x, z, t) = −m̃(j)
+ (−x+ 2x0k,−z, t)e i 2ξk(x,z), (27a)

mx(x, z, t) = −m̃(j)
x (−x+ 2x0k,−z, t). (27b)

The applicability of the above procedure to the asymp-
totic evolution of a single DW can be veri�ed noticing
that any single-DW solution to (18), (19), [Eq. (22)] sat-
is�es

m+(x, z, t) = −m̃+(−x+ 2x0,−z, t)e i 2ξ(x,z), (28a)

mx(x, z, t) = m̃x(−x+ 2x0,−z, t). (28b)

According to (25), (27a), (27b), two initially closing up
DWs of opposite (like) chiralities and polarities have to
diverge after the collision. The one of the colliding DWs
that was initially, for t → −∞, described with the �eld

ingredient m̃
(j)
+ , m̃

(j)
x , is �nally, for t → ∞, described

with the �eld ingredient m
(j)
+ , m

(j)
x . Hence, during the

collision, DWs exchange their parameters x01 ↔ x02 and
their phase factors. The DWs re�ect in a way that one
can say they pass through each other without changing
their velocities and polarities, however, with changing
their character from the head-to-head one into the tail-
-to-tail one and vice versa and their chiralities (the pro-
cess is illustrated in Fig. 4). This prediction corresponds
to the result of the �eld-induced collision of a Bloch DW
with a Néel DW in 1D ferromagnet [17], as well as of
the collision of spontaneously propagating (in absence of
the dissipation) topological solitons (DWs) in ferromag-
nets which are intermediate structures between the Bloch
and Néel DWs [19].
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Fig. 4. Collision of DWs forming a hard magnetization
bubble in a stripe. Scheme of the magnetization layout
in the initial (�nal) state is shown in the left (right)
picture for (a) pairs of transverse and vortex DWs of
like chiralities and polarities, (b) pairs of transverse and
vortex DWs of opposite chiralities and polarities.

We have considered systems of in�nite domains whose
energy cannot be de�ned, however, the smaller a domain
is the bigger percentage of the Zeeman part of its energy
is lost per time unit due to the DW motion. The �eld-
-induced DW re�ection induces the motion which con-
tradicts the rule of energy minimization. Such a motion
has to be decelerated and, eventually, suppressed when
the decrease of the DW interaction energy equals the in-
crease of the Zeeman energy. It results in formation of a
stationary bubble which is a counterpart of hard bubbles
in 1D systems [17].

5. Conclusions

In terms of the application of multi-DW systems to
the magnetic storage, the important result of the present
study is the prediction of bound states of DWs [which are
of opposite (like) chiralities and polarities] in the absence
of any external �eld. Such bound states are stable with
respect to simultaneous change of both the chirality and
polarity of one of the DWs in the bubble. Unlike station-
ary bubbles in 1D ferromagnets which are composed of
one Néel DW and one Bloch DW, the bubbles in mag-
netic stripes are composed of DWs of the same energy,
hence, they can be stable. In 1D systems, the instability
is a simple consequence of the fact that the Néel DWs are
of higher energy than the Bloch ones and they tend to
the reorientation into the Bloch walls in presence of �uc-
tuations [37]. The possibility of maintaining stable train
of many DWs in magnetic stripes without external power
supply (without application of the magnetic �eld) makes
such systems potentially useful as magnetic information
registers.
The result of the �eld-induced collision of DWs of op-

posite chiralities and polarities (or of like chiralities and
polarities) is found to be their re�ection. Hence, they can
form a stripe counterpart of the hard bubbles of magne-
tization of wide ferromagnetic platelets.

Another �nding to be stressed is the existence of sta-
tionary bound state of two vortex DWs of like chiralities
and of opposite polarities (a 2π-DW) in the absence of
any external �eld. It follows from Fig. 3b that the energy
of the relevant pair of vortex DWs E0(a) achieves min-
ima at a 6= 0. They correspond to the �nal state of the
long-term evolution of a breather. Such a state has no
counterpart in 1D ferromagnet while it has a counterpart
in critical media described with Ginzburg�Landau (or a
nonlinear Schrödinger) equation [16].
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Appendix A: Estimation of boundary energy

The magnetostatic energy of a magnetic element con-
tains contributions that relate to interactions of surface
charges, volume charges, and interaction between surface
and volume ones

EMS =

∫ ∫
ρ(x)ρ(x′)

|x− x′|
dV (x)dV (x′)

+

∫ ∫
σ(x)σ(x′)

|x− x′|
dS(x)dS(x′)

+

∫ ∫
σ(x)ρ(x′)

|x− x′|
dS(x)dV (x′), (A1)

where ρ = −∇ ·m, σ = n ·m. Following Ref. [38], re-
ducing one of the spatial dimensions with relevance to
�at systems of thickness τ and neglecting volume and
base-surface terms, the above expression is transformed
into the energy of the boundary of 2D system (up to the
multiplier τ)

τEB = τ2
∫
∂S

∫
∂S

σ(x)σ(x′) ln(|x−x′|/τ)dl(x)dl(x′)

+ τ2
∫
∂S

∫
Sbase

[σ(x)ρ(x′) + ρ(x)σ(x′)]

× ln(|x− x′|/τ)dl(x)dS(x′). (A2)

Here Sbase denotes the surface of the platelet base. For
any DW in the stripe, ρ(x) ∼ −∂mx/∂x ∼ [M2 −
m2
x]/(Mδ) with δ denoting the DW width. We estimate

the boundary energy with

τEB = τ2
∫
∂S

∫
∂S

(n′ ·m)(x)(n′ ·m)(x′)

× ln(|x− x′|/τ)dl(x)dl(x′)

− τ2
∫
∂S

∫
Sbase

(n′ ·m)(x)
∂mx

∂x
(x′)

× ln(|x− x′|/τ)dl(x)dS(x′)

≈ 2δτ2 ln(δ/τ)

∫ ∞
−∞

m2
z(x, 0, 0)dx
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− 2awτ2 ln(δ/τ)

∫ ∞
−∞

[
M2 −m2

x(x, 0, 0)
]
dx, (A3)

where aw corresponds to an e�ective thickness of the sur-
face layer of the stripe edge over which the magnetization
is independent of normal coordinate z (a� 1 and a ∝ δ).
Since δ ∼ w, one arrives at EB of (8).

Appendix B: Explicit form of integrals

I±(a, θ) ≡
∫ ∞
−∞

({
sech2(y) tanh(−y + a)

− sech2(−y + a) tanh(y)∓ cos(θa)
[
− tanh(y)

+ tanh(−y + a)
]
sech(y)sech(−y + a)

}2
+
{
− sech(y)

[
tanh(y) tanh(−y + a)

+ sech2(−y + a)
]
± cos(θa)sech(−y + a)

×
[
tanh(y) tanh(−y + a) + sech2(y)

] }2
+
{
sin(θa)sech(−y + a)

[
tanh(y) tanh(−y + a)

+ sech2(y)
]}2

+ [sin(θa) tanh(y)sech(−y + a)]
2

+
[
sech(y) tanh(−y + a)± cos(θa) tanh(y)

× sech(−y + a)
]2)

dy. (B1)
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