
Vol. 136 (2019) ACTA PHYSICA POLONICA A No. 3
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In this paper, the Mei symmetry of the Euler–Lagrange equations on time-scales and its relation to the Noether

symmetry are investigated. The definition and criterion of Mei symmetry of the Lagrangian system on time-scales
are given. The conditions and forms of new conserved quantities which are found from the Mei symmetry of the
system are derived. In addition, the Noether symmetry of a variational problem for Lagrangian on time-scales under
the action of infinitesimal generator vectors and its corresponding conserved quantity are discussed. The results
show that the Euler–Lagrange equations on time-scales, the Noether identity and the Noether conserved quantity
of the variational problem under discussion are the same with the criterion equations, the structural equation, and
the conserved quantity of the Mei symmetry for the original Lagrangian system on time-scales, respectively. In the
end, two examples are provided to illustrate applications of the results.
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1. Introduction

The symmetry method plays an important role in find-
ing conserved quantities of dynamical equations. The
relationship between the symmetry and the conserved
quantity was revealed firstly by Noether [1] in 1918. That
is, a conserved quantity can be found from a symmetry.
Except for the Noether symmetry method, the Lie sym-
metry method [2–4] and the Mei symmetry method [5]
are the other two valuable methods in studying dynam-
ical systems. The Lie symmetry is the invariance of dif-
ferential equations of motion of systems under the in-
finitesimal transformations, while the Mei symmetry is
the form invariance of differential equations of motion
when dynamical functions are replaced by transformed
functions under the infinitesimal transformations. Here,
the dynamical functions are Lagrangian, Hamiltonian,
Birkhoffian, non-potential generalized forces, holonomic
and non-holonomic constraint forces, holonomic and non-
holonomic constraint equations, non-conservative forces,
etc. The three symmetries above can lead directly or in-
directly to conserved quantities. The Noether conserved
quantity, the Hojman conserved quantity [6], and the Mei
conserved quantity are three main conserved quantities.
There is also a close relationship between these symme-
tries. Many important results were obtained by Mei and
other workers [7–14].

The calculus of time-scales, which has attracted much
attention, was first proposed by Hilger [15] in order to
unify continuous and discrete analysis. The theory of
time-scales is really useful and plays an important role
in modeling complex dynamical processes [16–18]. It not
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only reveals the discrepancies between continuous results
and discrete results, but also helps avoid proving results
twice. In 2004, Bohner and Hilscher developed the cal-
culus of variations on time-scales [19]. Basic mathemat-
ical theories about this subject were fully developed in
Refs. [20–28].

Moreover, applications of the Noether symmetry
method and the Lie symmetry method have made
great progress in control problems on time-scales, non-
conservative systems on time-scales, Hamiltonian sys-
tems on time-scales, and Birkhoffian systems on time-
scales [29–34]. However, little research about the Mei
symmetry of dynamical systems on time-scales has been
done. It is also important to find its relations to the
Noether symmetry and the Lie symmetry. In this paper,
we will study the Mei symmetry for Lagrangian systems
on time-scales. Its relation to the Noether symmetry is
discussed from the point of view of a variational problem.

This paper is organized as follows. In Sect. 2, we give
the definition and criterion of the Mei symmetry for the
Lagrangian system on time-scales. Three kinds of con-
served quantities led by the Mei symmetry of the system
on time scales are given in Sect. 3. In Sect. 4, we pro-
vide a discussion about the relationships between the Mei
symmetry and the Noether symmetry. Two examples are
provided in Sect. 5 to show applications of the results. In
the end, conclusions and future works are given.

2. Mei symmetry
of time-scales Euler–Lagrange equations

For basic knowledge about the calculus on time-scales,
the readers can refer to Refs. [16] and [17].

The equations of motion for Lagrangian system [19] on
time-scales are
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∆

∆t

∂L

∂q∆
s

− ∂L

∂qσs
= 0, (s = 1, 2, . . . , n) , (1)

where the Lagrangian L(t, qσs (t), q∆
s (t)) : T × R2n → R

and the generalized coordinates qs (t) : T → R are as-
sumed to be C1

rd. Assuming that

Es =
∆

∆t

∂

∂q∆
s

− ∂

∂qσs
, (2)

Eq. (1) becomes
Es (L) = 0, (s = 1, 2, . . . , n) . (3)

Suppose
t∗ = T (t, qk (t) , ε) = t+ εζ (t, qk (t)) , (4)

q∗s = Qs (t, qk (t) , ε) = qs (t) + εξs (t, qk (t))

(s, k = 1, 2, . . . , n) , (5)
are one-parameter infinitesimal transformations of group
and let

X = ζ
∂

∂t
+ ξs

∂

∂qs
(6)

be the corresponding infinitesimal generator, where
ε ∈ R.

The Lagrangian L becomes a new Lagrangian L∗ under
the transformations (4) and (5), that is

L∗ = L

(
t∗, q∗σ

∗

s ,
∆q∗s
∆t∗

)
=

L

(
t+ εζ, qσs + εξσs ,

q∆
s + εξ∆

s

1 + ε∆ζ

)
, (7)

by performing Taylor series expansion at the point ε = 0,
we have

L∗ = L
(
t, qσs , q

∆
s

)
+ εX(1) (L) +O

(
ε2
)
, (8)

where

X(1) = ζ
∂

∂t
+ ξs

∂

∂qs
+
(
ξ∆
s − q∆

s ζ
∆
) ∂

∂q∆
s

(9)

is the first extended infinitesimal generator [34].
Definition 1. If the form of Eq. (3) stays invari-

ant when the Lagrangian L is replaced by the new La-
grangian L∗, i.e.

Es (L∗) = 0, (s = 1, 2, . . . , n) , (10)
then this invariance is called the Mei symmetry of equa-
tions of motion for the Lagrangian system on time-scales.

From Definition 1 and Eq. (8), we have
Criterion 1. If the infinitesimals ζ and ξs satisfy

Es

[
X(1) (L)

]
= 0, (11)

then the corresponding invariance is the Mei symmetry
for the Lagrangian system (3) on time-scales.

3. New conserved quantities of Lagrangian
systems on time-scales

For the Lagrangian system (3) on time-scales, new con-
served quantities can be led by the Mei symmetry.

Theorem 1. If the infinitesimals ζ and ξs of the
Mei symmetry of the system (3) and the gauge function
G1(t, qσs , q

∆
s ) satisfy the following structural equation:

X(1) (L) ζ∆ +X(1)
[
X(1) (L)

]
+µ (t)

∂X(1) (L)

∂qσs
q∆
s ζ

∆ +G∆
1 = 0, (12)

then the Mei symmetry of the system can lead to the
new conserved quantity

I1 =
∂X(1) (L)

∂q∆
s

ξs +

[
X(1) (L)− ∂X(1) (L)

∂q∆
s

q∆
s

−µ (t)
∂X(1) (L)

∂t

]
ζ +G1 = const. (13)

Proof. To prove that Eq. (13) is a conserved quantity,
we need to prove

∆
∆tI = 0. (14)

More specifically, we have
∆

∆t
I1 =

∂X(1) (L)

∂q∆
s

ξ∆
s +

∆

∆t

(
∂X(1) (L)

∂q∆
s

)
ξσs

+

[
X(1) (L)− ∂X(1) (L)

∂q∆
s

q∆
s − µ (t)

∂X(1) (L)

∂t

]
ζ∆

+
∆

∆t

[
X(1) (L)− ∂X(1) (L)

∂q∆
s

q∆
s

−µ (t)
∂X(1) (L)

∂t

]
ζσ +G∆

1 . (15)

Here, for the system (3), the following energy equa-
tion [26]:

∆

∆t

[
L− ∂L

∂q∆
s

q∆
s − µ (t)

∂L

∂t

]
=
∂L

∂t
(16)

holds. After the transformation, the new energy equa-
tion

∆

∆t

[
L∗ − ∂L∗

∂q∆
s

q∆
s − µ (t)

∂L∗

∂t

]
=
∂L∗

∂t
(17)

holds by a similar proof of Eq. (16). Taking note of
Eq. (8), we have

∆

∆t

[
X(1) (L)− ∂X(1) (L)

∂q∆
s

q∆
s − µ (t)

∂X(1) (L)

∂t

]
=

∂X(1) (L)

∂t
. (18)

Thus, combining Eq. (12) with Eq. (18) yields
∆

∆t
I1 = X(1) (L) ζ∆ +X(1)

[
X(1) (L)

]
+µ (t)

∂X(1) (L)

∂qσs
q∆
s ζ

∆ +G∆
1 = 0. (19)

The proof is completed. Theorem 1 gives the Mei
conserved quantity (13) on time-scales led directly by
the Mei symmetry of the system (3) while considering
the structure equation (12). When T = R, the con-
served quantity (13) becomes the classical Mei conserved
quantity.
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Remark 1. If T = R, then σ (t) = t, µ (t) = 0,
and the conserved quantity (13) becomes the classical
one [5]:

I1 =
∂X(1) (L)

∂q̇s
ξs

+

[
X(1) (L)− ∂X(1) (L)

∂q̇s
q̇s

]
ζ +G1 = const. (20)

Remark 2. If T = hN0 =
{
hi : i ∈ N0

}
, where h > 1

is a fixed real number, then σ (t) = ht, µ (t) = (h− 1) t,
the conserved quantity (13) becomes the quantum one

I1 =
∂X(1) (L)

∂q∆
s

ξs +

[
X(1) (L)− ∂X(1) (L)

∂q∆
s

− (h− 1) t
∂X(1) (L)

∂t

]
ζ +G1 = const, (21)

where q∆
s = qs(ht)−qs(t)

(h−1)t .

Here, the calculus on T = hN0 =
{
hi : i ∈ N0

}
, h > 1

is known as one type of quantum calculus [35], which
helps to bridge the gap between the two families of
models: continuous and discrete and is receiving an
increased interest due to the applications in physics,
economics, numerical analysis, and the calculus of
variations [36–39].
Theorem 2. If the infinitesimals ζ and ξs of the

Mei symmetry of the system (3) and the gauge function
G2

(
t, qσs , q

∆
s

)
satisfy the following condition:

qσs
∆

∆t

∂X(1) (L)

∂qσs
+ q∆

s

∆

∆t

∂X(1) (L)

∂q∆
s

+G∆
2 = 0, (22)

then the Mei symmetry of the system can lead to the new
conserved quantity

I2 =
∂X(1) (L)

∂qσs

[
qσs − µ (t) q∆

s

]
+G2 = const. (23)

By taking note of Eq. (11) and the condition (22), we
can derive that Eq. (23) is a conserved quantity of the
system (3).
Theorem 3. If the infinitesimals ζ and ξs of the

Mei symmetry of the system (3) and the gauge function
G3

(
t, qσs , q

∆
s

)
satisfy the following condition:

∂X(1) (L)

∂t
+G∆

3 = 0, (24)

then the Mei symmetry of the system can lead to the new
conserved quantity

I3 = X(1) (L)− ∂X(1) (L)

∂q∆
s

q∆
s

−µ (t)
∂X(1) (L)

∂t
+G3 = const. (25)

By taking note of Eqs. (18) and (24), we can derive that
Eq. (25) is a conserved quantity of the system (3).

Theorem 2 and Theorem 3 give the other two kinds
of conserved quantities (23) and (25) on time-scales also
led by the Mei symmetry while considering the conditions
(22) and (24).

The next section will show the relationship between the
Mei symmetry and the Noether symmetry on the basis
of Theorem 1.

4. The relationship between Mei symmetry
and Noether symmetry

4.1. The variational problem for Lagrangians
on time-scales under the action
of infinitesimal generator vector

Let us consider integral functional S [q (·)] defined by:

S [q (·)] =

b∫
a

X(1)
[
L
(
t, qσs (t) , q∆

s (t)
)]

∆t (26)

with the boundary condition
qs (t)|t=a = qs (a) , qs (t)|t=b = qs (b) ,

(s = 1, 2, · · · , n) . (27)
The necessary condition for an extremum of the func-
tional (26) at qs = qs (t) is that the variation of S [q (·)]
is zero, i.e.

δS [q (·)] =

b∫
a

(
∂X(1) (L)

∂qσs
δqσs +

∂X(1) (L)

∂q∆
s

δq∆
s

)
∆t = 0.

(28)
According to the formula of integration by parts of cal-
culus on time-scales [16], we get

δS [q (·)] =

 t∫
a

∂X(1) (L)

∂qσs
∆τδqs

∣∣∣∣∣∣
b

a

+

b∫
a

∂X(1) (L)

∂q∆
s

−
t∫
a

∂X(1) (L)

∂qσs
∆τ

 (δqs)
∆

∆t = 0

(29)
by applying the relations δqσs = (δqs)

σ and δq∆
s = (δqs)

∆.
By considering the condition (27) and Dubois–

Reymond lemma [19], we can obtain the Euler–Lagrange
equation of the variational problem (26) and (27) with
the same form of the criterion equation (11) of the Mei
symmetry for the Lagrangian systems on time-scales (3).

4.2. Noether symmetry of the variational problem (26)
and (27)

The Noether symmetry is about a kind of invariance of
the action integral under infinitesimal transformations.

If the formula
b∫
a

X(1)
[
L
(
t, qσs (t) , q∆

s (t)
)]

∆t =

α(b)∫
α(a)

X(1)
[
L
(
t∗, qσ

∗

s (t∗) , q∆∗

s (t∗)
)]

∆∗t∗ (30)

holds under the transformations (4) and (5), then this
invariance is called the Noether symmetry on time-scales.
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Here, the new time-scale map t → α (t) : T (t, qk (t) , ε)
is assumed as an increasing C1

rd function and the symbol
∆∗ and σ∗ denote the delta derivative and the forward
jump operator, respectively. Also, we have the property
σ∗ ◦ α = α ◦ σ.

If the formula
b∫
a

X(1)
[
L
(
t, qσs (t) , q∆

s (t)
)]

∆t =

α(b)∫
α(a)

X(1)
[
L
(
t∗, qσ

∗

s (t∗) , q∆∗

s (t∗)
)]

∆∗t∗

+

b∫
a

∆

∆t

(
∆̂GN

)
∆t (31)

holds under the transformations (4) and (5), where
∆̂GN = εGN

(
t, qσs , q

∆
s

)
, then this invariance is called

the Noether quasi-symmetry on time-scales. If GN = 0,
this invariance is the Noether symmetry on time-scales.

From Eq. (31), for the infinitesimals ζ and ξs there
exists a gauge function GN

(
t, qσs , q

∆
s

)
satisfying

∂X(1) (L)

∂t
ζ +

∂X(1) (L)

∂qσs
ξσs +

∂X(1) (L)

∂q∆
s

(
ξ∆
s − q∆

s ζ
∆
)

+X(1) (L) ζ∆ = − ∆

∆t
GN . (32)

Formula (32) can be called the Noether identity of the
variational problem (26) and (27). Note that the Noether
identity (32) equals to the structural Eq. (12).
Theorem 4. For the variational problem (26) and

(27), if the infinitesimals ζ, ξs and the gauge function
GN

(
t, qσs , q

∆
s

)
satisfy the Noether identity (32), then the

Noether quasi-symmetry can lead to the conserved quan-
tity of the form (13) directly.

5. Examples

Example 1. The Lagrangian of a system on time-
scales with two degrees of freedom is

L =
1

2

[(
q∆
1

)2
+
(
q∆
2

)2]− qσ1 qσ2 + t2. (33)

Let us study the form invariance and the conserved quan-
tity of the system.

The equations of the system are
q∆∆
2 = −qσ1 , q∆∆

1 = −qσ2 . (34)
If we choose the first extended infinitesimal generator of
the form

X(1) = q2
∂

∂q1
+ q1

∂

∂q2
+ q∆

2

∂

∂q∆
1

+ q∆
1

∂

∂q∆
2

, (35)

then the corresponding invariance is form invariance,
because

X(1)

(
1

2

(
q∆
1

)2
+

1

2

(
q∆
2

)2 − qσ1 qσ2 + t2
)

=

2q∆
1 q

∆
2 − (qσ1 )

2 − (qσ2 )
2 (36)

and
Es

[
2q∆

1 q
∆
2 − (qσ1 )

2 − (qσ2 )
2
]

= 0. (37)

From Eq. (12), we have

−4qσ1 q
σ
2 + 2q∆

2 q
∆
2 + 2q∆

1 q
∆
1 = − ∆

∆t
G1. (38)

Thus, we know that
G1 = −2q1q

∆
1 − 2q2q

∆
2 (39)

is a solution of (38). According to Theorem 1, the con-
served quantity (13) of the system is

I1 = 0. (40)
This conserved quantity is the trivial one.

According to Theorem 2, we obtain
G2 = 2q1q

σ
1 + 2q2q

σ
2 (41)

and
I2 = 0. (42)

This conserved quantity is also a trivial one.
According to Theorem 3, we obtain
G3 = 0 (43)

and
I3 = − (qσ1 )

2 − (qσ2 )
2 − 2q∆

1 q
∆
2 = const. (44)

Conserved quantity (44) is led by form invariance of the
system.

The results show that the Mei symmetry can lead to
different conserved quantities under different conditions.
Example 2. The Lagrangian of a system on time-

scale T = hN0 =
{
hi : i ∈ N0

}
is

L =
1

2

[(
q∆
1 (t)

)2
+
(
q∆
2 (t)

)2]− qσ2 (t) , (45)

where h > 1 is a constant and σ (t) = ht, µ (t) =
(h− 1) t.

The equations of the system are
q∆∆
1 (t) = 0, q∆∆

2 (t) + 1 = 0. (46)
Considering the calculation, we have

X(1) (L) = −ξσ2 (t) +
(
ξ∆
1 (t)− q∆

1 (t) ζ∆ (t)
)
q∆
1 (t)

+
(
ξ∆
2 (t)− q∆

2 (t) ζ∆ (t)
)
q∆
2 (t) . (47)

If we choose the infinitesimals
ζ = ξ1 = 0, ξσ2 (t) = q∆

2 (t) + t, (48)
then we have

Es

[
X(1) (L)

]
= Es

[
−q∆

2 − t
]

= 0, (s = 1, 2) , (49)

X(1)
[
X(1) (L)

]
= 0. (50)

Substituting (48) and (50) into (12), we obtain
G1 = 0 (51)

and the conserved quantity (13) gives
I1 = −q∆

2 (t− µ (t))− (t− µ (t)) =

−q∆
2 ((2− h) t)− (2− h) t = const. (52)

From the discussion in Sect. 4, the integral functional
(26) gives
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S =

b∫
a

X(1)

[
1

2

(
q∆
1 (t)

)2
+

1

2

(
q∆
2 (t)

)2 − qσ2 (t)

]
∆t =

b∫
a

(
−q∆

2 − t
)

∆t (53)

with the boundary condition
qs (t)|t=a = qs (a) , qs (t)|t=b = qs (b) , (s = 1, 2) .

(54)
Taking note of Theorem 4, we know that the infinitesi-
mals (48) and Eq. (52) correspond to the Noether sym-
metry and Noether conserved quantity of the variational
problem (53) and (54).

6. Conclusions

In recent years, the theory of time-scales calculus has
become widely useful in describing complex dynamic pro-
cess. The theory of symmetry is an important research
aspect of analytical mechanics, mathematical physics,
and dynamic control. This paper presents and studies
the Mei symmetry for Lagrangian systems on time-scales.
Three new forms of conserved quantities on time-scales
are derived from the Mei symmetry of the system. In ad-
dition, the relation between the Mei symmetry and the
Noether symmetry is discussed from the point of view of
a variational problem for time-scales Lagrangian under
the action of infinitesimal generator vector. The results
of this paper cover not only the continuous results and
the discrete results but also the results on time interval
domain.

Further works about the Mei symmetry for noncon-
servative holonomic systems, non-holonomic systems,
Hamiltonian systems, and Birkhoffian systems on time
scales as well as its relations to Lie symmetry on time-
scales are still worth doing.
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