
RADIOENGINEERING, VOL. 28, NO. 3, SEPTEMBER 2019 505 

DOI: 10.13164/re.2019.0505 FEATURE ARTICLE 

Modeling Cascaded Cylindrical Metasurfaces 
with Spatially-Varying Impedance Distribution 

Zvonimir SIPUS 1, Zoran ERES 2, Dominik BARBARIC 3 

1 Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia 
2 Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia 

3 Ericsson Nikola Tesla d.d., Research and Development Centre, Krapinska 45, 10000 Zagreb, Croatia 

zvonimir.sipus@fer.hr, zoran.eres@irb.hr, dominik.barbaric@ericsson.com  

Submitted July 21, 2019 / Accepted July 29, 2019 

 
Abstract. Modeling curved metasurface structures repre-
sents a computing challenge due to the complexity of con-
sidered designs. This creates a need for specialized effi-
cient analysis methods. An approach that combines the 
spectral-domain field representation and surface sheet 
impedance concept is proposed. The considered cascaded 
cylindrical metasurface structures can span across only 
a part of a canonical surface and unit cell elements can 
vary along the metasurface, giving a spatially-varying 
sheet impedance. The analysis method is experimentally 
verified against a cylindrical metasurface for shaping the 
feed antenna beam. The problem of manufacturing curved 
metasurfaces is also discussed in the paper. 
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1. Introduction 
Multilayered dielectric structures with embedded 

metallic patterns, commonly referred to as metasurfaces, 
can act as electromagnetic devices that direct EM waves, 
manipulate the polarization of transmitted or reflected 
waves, or influence the spectral properties of those waves. 
This enables a wider range of functionalities, such as fo-
cusing, beam tilting, polarization manipulation, and in-
creased bandwidth and angular performance [1–3]. The 
building blocks of metasurfaces are sub-wavelength ele-
ments that replace traditional resonant elements previously 
used in the design of periodic frequency selective surfaces 
(FSS) [4].  

Until now, most of the attention was focused on pla-
nar metasurfaces that can be realized using conventional 
printed circuit board (PCB) fabrication techniques. For 
such surfaces, efficient design approaches based on surface 
impedance boundary conditions (both penetrable [2], [3], 

[6–11] and opaque surface impedance formulations [5], 
[12], [13]) have been developed. Introduction of curvature, 
needed either for mechanical, aerodynamic or electromag-
netic reasons, significantly complicates the analysis, as one 
need to deal with finite dimensions and more complex 
periodicity. In more details, the incident plane wave is 
scattered into a spectrum of reflected waves, as opposed to 
a single plane wave produced by scattering against a planar 
metasurface. Further, the projection of a periodic grid onto 
curved surfaces becomes an issue, in particular for struc-
tures that are curved in both principal directions. Cylindri-
cal metasurfaces, fabricated from flexible PCB substrate 
material, have been considered in past as an attractive class 
of curved metasurface structures. They were used for re-
shaping radiation patterns [14], [15], mantle cloak realiza-
tions [16], [17], reduction of antenna blockage [18], and 
scattering manipulation and camouflage [19]. 

Some devices, such as cylindrical or spherical cloaks, 
would require homogeneous distribution of surface imped-
ance. However, many devices require spatially-varying 
impedance distribution in order to modulate phase and/or 
amplitude of incoming wave. Quite often a metasurface 
occupying only a part of canonical surface (such as a cyl-
inder or a sphere) is to be designed. One example is a dome 
antenna used to either flatten the gain or to enhance the 
gain of the antenna array placed inside the dome.  

The aim of this paper is to discuss the spectral-do-
main analysis approach of a class of metasurface structures 
with spatially-varying impedance distribution. The spec-
tral-domain approach is selected as it is a traditional way of 
determining EM field distribution in multilayer cylindrical 
structures. The basis of the analysis approach for spatially-
uniform metasurfaces is described in [20]. However, there 
is additional freedom in selecting the domain (spectral or 
spatial) to be used while calculating the surface sheet im-
pedance distribution, and selecting whether the EM field in 
each cylindrical layer, or the induced current distribution in 
each curved metasurface sheet is the quantity to be deter-
mined by the analysis. All these options will be discussed 
in the first part of this paper, starting with an analysis of 
a basic single-layer metasurface, and expanding it for gen-
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eral multilayer multi-metasurface structure formulations. 
This is further exploited in Sec. 3 where one design exam-
ple is studied in detail, as well as the production of curved 
metasurface structures. 

2. Analysis Approach 
The geometry of the considered cylindrical problem is 

shown in Fig. 1(a). It is a multilayer metasurface structure 
excited by an arbitrary feed antenna. Each metasurface 
layer is modelled by a penetrable sheet impedance bound-
ary condition.  

The analysis method will be explained by considering 
the basic geometry, as seen in Fig. 1(b): a 2D single-layer 
metasurface which is non-homogeneous in -direction and 
homogeneous in axial direction. The metasurface is located 
in free space, and it is excited from the central axis; i.e. the 
excitation is a constant current line source. Without losing 
generality, we will assume that the considered metasurface 
has electric response only. Note that it is analytically 
shown that bianisotropic metasurfaces can be realized by 
cascading anisotropic, patterned metallic sheets described 

by an electric sheet admittance tensor ( , )Y z  [2]. The 

boundary condition to be satisfied is the following: 

 meta metaˆ( , ) ( , , ) ( , , )Y z z z       E H  (1) 

where H  represents the magnetic field discontinuity be-
tween the outer and inner boundary of the metasurface. 
The considered metasurface can also be constrained to only 
a part of the cylindrical tube. For the rest of the tube, we 
then impose the following boundary condition: 

 
 

(a) 

 
(b) 

Fig. 1. Geometry of a curved metasurface structure with 
spatially-varying value of surface sheet impedance;  
(a) general multilayer metasurface with an arbitrary 
feed antenna, (b) basic 2D geometry.  

 metaˆ ( , , ) 0z   H . (2) 

The two boundary conditions can be merged if the unpop-
ulated part of the cylindrical surface is represented by 
a zero-admittance sheet. Now, the boundary condition for 
the whole cylindrical interface is given by (1). 

The incident field excited by a constant-current line 
source is: 

 inc (2)0 0
z 0 0 0( , ) ( ) ,

4

k
E H k I

      (3.a) 

 inc (2)0
1 0 0( , ) j ( ) .

4

k
H H k I       (3.b) 

Here, I0 is the amplitude of the line source current. Under 
these assumptions we can write the field distribution in 
regions inside and outside the cylinder: 
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(b) the outer region 
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Here, m
(1) and m

(2) are amplitudes of scattered field’s 
spectral components in inner and outer region, respec-
tively. In (3)–(5), Jm is the Bessel function, Hm

(2) is the 
Hankel function of the second kind, and k0 and η0 are the 
wave number and the wave impedance of free space. Note 
that Hz and E components are zero for the considered 
metasurface structure and line source excitation. In other 
words, we assumed that the metasurface does not excite 
cross-polar components. 

The boundary condition (1) can be fulfilled both in 
the spatial and in the spectral domain (the Fourier series 
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expansion of the EM field in the -direction represents the 
transformation of the EM field into spectral domain): 

(a) in spatial domain 
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(b) in spectral domain 
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Although both approaches are mathematically equivalent, 
they are quite different from a numerical implementation 
point of view, mostly due to presence of convolution sum-
mation/integration. We found it easier to implement the 
boundary conditions by using the spatial domain approach, 
in particular for structures that are non-homogeneous in 
axial direction. 

Two analysis approaches will be presented here: 
Mode Matching (MM) and Method of Moments (MoM). 
The key difference between them is in the form they state 
the boundary conditions. These boundary conditions then 
constitute the basis for the analysis. Figure 2 illustrates the 
approaches, and they are further explained in the rest of 
this section.  

In the MM approach, the unknowns are the ampli-
tudes of field components in each region of interest. It is 
sufficient to consider the amplitudes of Ez and Hz compo-
nents, which leads to the decomposition of the EM field on 
TMz and TEz modes. In the considered basic 2D case, the 
unknown amplitudes are m

(1) and m
(2), defined by (4.a) 

and (5.a). Now, having fulfilled the boundary conditions 
that state that the tangential E-field is continuous at the 
metasurface boundary, and the boundary condition (6), we 
arrive at the following system of equations:  
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  (8.b) 
Here Yzz() is the zz-component of sheet admittance tensor 

( )Y  . If we determine the limit in summation as Mmax, we 

need to select 2Mmax + 1 observation points to obtain 
a linear system of 2Mmax + 1 equations with the same 
number of unknowns: 

 
Fig. 2. Structure of two analysis approaches of curved 

metasurfaces. 
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In this equation the connection between m
(1) and m

(2) 
(given by (8.a)), and the Wronskian expression for Bessel 
functions Jm(x)Hm

(2)(x) – Jm(x)Hm
(2)(x) = j2/x is imple-

mented. The minimum number for Mmax is int(k0ρmeta), as 
obtained from the far-field limit [21]. More accurate results 
are obtained with Mmax = 2 int(k0ρmeta), and this is the limit 
we used in calculations. Usually, one observation point is 
located at the center of each metasurface cell. However, if 
the selected Mmax is large, more than one observation point 
can be located on each metasurface cell.  

Generalization of the MM approach to the multilayer 
case is straightforward – one should assume the 
representation of Ez and Hz components in each region as 

 (2)
z 1 2( , ) ( ) ( )i i i

m m i m m iE m C J k C H k    ,  (10.a) 

 (2)
z 3 4( , ) ( ) ( ).i i i

m m i m m iH m C J k C H k      (10.b) 

Here, we used standing wave and outward travelling cylin-
drical wave representation of the field in each layer, with ki 
being the wave number of i-th layer, and Ci

m being the 
wave amplitudes that need to be determined. The other 
field components are determined using the following 
expressions: 

 j
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The boundary conditions at each boundary ρi, con-
necting the field representation in neighboring regions are: 

 1
meta meta( , ) ( , ), ,i i i im m m   E E    (12.a) 
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The Method of Moment (MoM) procedure is based 
on the introduction of induced surface electric current Jav 

and approximating it by a set of base functions Jp
av with 

unknown amplitudes αp: 
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It is sufficient to consider only one boundary condition per 
metasurface layer: 
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By implementing the Galerkin approach, the final system 
of MoM equations has a form: 
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  (15) 
Here, the presence of a supporting dielectric structure 

is taken into account through the EJG
  Green’s function for 

a multilayer cylindrical structure. Its spectral domain form 
is easily calculated by available algorithms, such as 
G1DMULT [22], [23]. For a basic cylindrical structure 
from Fig. 1(b) the Green’s function is 
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Note that, by selecting specific basis and test func-
tions (namely Fourier series basis functions and point-

matching test functions), both approaches (MM and MoM) 
will lead to identical linear system of equations. Further-
more, note that the presented 2D formulation can easily be 
generalized for a 3D problem by implementing the Fourier 
transformation in z-direction to model the spatial variation 
of metasurface admittance in axial direction. 

3. Results 
Similarly as in previous section, a cylindrical meta-

surface placed around an axial incident field source is con-
sidered. The EM field source is exciting an omnidirectional 
radiation pattern in the radial plane. The purpose of the 
metasurface is to modify the incident field so that two main 
beams are formed in the region outside the metasurface, 
angularly displaced by 90°, and symmetrical to the central 
normal plane of the metasurface structure. The considered 
single-layer metasurface is printed on a thin substrate 
(εr = 2.55, h = 0.13 mm). It contains 24 inductive cells that 
are in practice realized using stripes or meander lines. The 
radius of the cylinder is 6 cm and the width of each cell is 
7.854 mm. Only half of the cylinder is covered by the 
metasurface structure. The variation of surface sheet 
impedance is listed in Tab. 1, and the practical realization 
is shown in Fig. 3. The prototype was developed using 
standard PCB technology. The used thin PCB substrate 
was flexible enough to bend the PCB structure into a half-
cylinder form of the desired radius. 

 
Fig. 3. PCB realization of metasurface layer featuring stripes 

and meander lines. 
 

 

Segment   
No. 

Type of metasurface 
structure 

Stripe width 
Total width of 
meander line 

Calculated surface 
sheet impedance 

Estimated surface sheet 
impedance for conductive 

paint realization 
1 stripes 1.3 mm - j·126.16 Ω 0.3 + j·126.16 Ω 
2 stripes 0.5 mm - j·223.66 Ω 0.8 + j·223.66 Ω 
3 meander line 0.5 mm 3.5 mm j·392.53 Ω 2.2 + j·392.53 Ω 
4 meander line 0.5 mm 5.15 mm j·587.52 Ω 2.8 + j·587.52 Ω 
5 meander line 0.5 mm 6.1 mm j·756.39 Ω 3.1 + j·756.39 Ω 
6 meander line 0.5 mm 6.5 mm j·853.89 Ω 3.2 + j·853.89 Ω 

Tab. 1. Details of the design of single-layer cylindrical metasurface structure containing 24 segments: straight stripes have a variable 
line width and meander lines have a fixed line width and a variable total width. The radius of the cylindrical metasurface 
structure is 60 mm and the central working frequency is 10 GHz. Due to symmetry, only ¼ of the structure is described. 
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For additional verification, the metasurface structure 
was also simulated using CST Microwave Studio. In it, we 
analyzed the whole structure with all the details, which 
required computing time of several hours, compared to 
a few seconds needed by the in-house developed code 
using the presented analysis approach. A comparison be-
tween the measured radiated field and calculated results are 
given in Fig. 4.  

The production of single-curved structures (i.e. 
structures with one principal direction of curvature) is of 
the same order of complexity as the production of their 
planar counterparts, and standard printed circuit board 
(PCB) production technology can still be used to a large 
extent. However, there are several practical details to be 
considered. First, by bending a planar substrate, the length 
of the outer surface becomes larger than the length of the 
inner surface. This extension of the outer surface length 
should be considered while designing the metasurface 
elements. Next, when designing structures with more than 
two metasurface layers, it is important to adhesively bond 
the layers together without introducing air pockets, gaps 
and cracks between them. Therefore, in this process it is 
important to have a rigid frame (i.e. mould) to successfully 
bend and glue layers that form a multilayer structure to-
gether. Finally, it is important to choose a substrate suitable 
for bending, i.e. to select a microwave substrate with a low 
value of flexural modulus.  

Double-curved metasurface structures are much 
harder to produce. It is not possible to just bend the sub-
strate material, since we now have two principal orthogo-
nal directions of curvature. One possibility is to produce 
the dielectric supporting structure using additive manufac-
turing technology. The metallization process is more com-
plex, and we have investigated several options for per-
forming metallization: the first using sprays with conduc-
tive paint, the other using electroless copper plating pro-
cess, and finally using sputtering technology.  

As it proves to be the simplest approach, the first 
option  was  tested  by repeatedly  producing a single-layer 

 
Fig. 4. Electric field response of a curved metasurface printed 

on a thin supporting dielectric structure. Comparison 
between measurements, and calculations obtained from 
the developed spectral-domain method and CST 
Microwave Studio.  

 
Fig. 5. Electric field response of a curved metasurface printed 

on a thin supporting structure. Comparison of 
measured results between two metasurface structures; 
one produced using standard PCB production 
technology, and the other produced by spraying the 
Conductive silver coating 3830 paint.  

metasurface shown in Fig. 3. First, a template for laying 
the spray-paint was prepared out of solid thin cardboard. 
For precise cutting we used a laser-equipped CNC ma-
chine. Next, the conductive spray-paint was applied on the 
dielectric substrate. Conductive silver coating 3830 paint, 
produced by the Hollandshielding Company, was used. 
The declared surface resistance is better than 0.015 Ω/square 
at 25 microns coating thickness. We tried to estimate the 
losses in stripes and meander lines of the produced proto-
type. To do that, we started with an approximate formula 
for surface impedance of periodic stripes with included 
losses [24]: 

   1approx 0 0
zz j log csc .

2 2

k W
Y R P P

P  


 


   
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 (17) 

Here, P is the period of the stripes, W is the stripe 
width, and Rσ is the term that represents the resistance per 
unit length. We estimated Rσ by measuring the DC re-
sistance, and the obtained values are also given in Tab. 1. It 
is found that paint of large conductivity introduces negligi-
ble additional losses, i.e. the realized gain pattern remains 
almost unaffected. The comparison of measured radiation 
patterns between two structures, the one produced by 
standard PCB production technology, and the other pro-
duced using conductive paint approach, is given in Fig. 5. 
Both curves in Fig. 5 are normalized to the maximum of 
the measured gain, achieved with the standard PCB case. 
The goal of forming two main beams at angles ±45° is 
achieved. While no additional losses were introduced by 
the conductive paint coating, we did not manage to keep 
the precision of PCB production, so the shape of the radia-
tion pattern is somewhat perturbed, as compared to both 
standard PCB production technique, and the desired radia-
tion pattern.  

4. Conclusion 
The paper discusses a spectral-domain approach for 

analyzing cylindrical cascaded metasurface structures with 
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spatially-varying distribution of surface sheet impedance. 
The formulation also covers metasurfaces that are located 
only on a part of canonical curved surface. Although the 
spectral-domain approach is selected due to inherently 
convenient EM field representation for multilayer cylindri-
cal structure, several different formulations of the analysis 
approach are discussed, and the selection of the most suita-
ble depends on the domain (spectral or spatial) in which we 
would like to calculate the surface sheet impedance distri-
bution and on the unknown quantity that needs to be de-
termined – be it the EM field in each cylindrical layer or 
the induced current distribution at each curved metasurface 
sheet.  

The problem of production of curved metasurface 
structures is also discussed in the paper. Single-curved 
structures (i.e. structures with one principal direction of 
curvature) can be quite easily produced using standard 
printed circuit board (PCB) technology; one just needs to 
select a proper substrate suitable for bending. However, 
double-curved structures are much harder to produce. One 
possibility is to produce the supporting dielectric structure 
using e.g. additive 3D printing technology and then to 
metalize the desired patterns onto it using conductive paint. 
There are still many technological issues to be solved, in 
particular, the problem of fine control of metallic pattern 
dimensions, and building curved multilayer metasurface 
structures without cracks and gaps between layers. These 
are the topics for future investigations.   
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