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Abstract 

The energy consumption modeling and the optimization solution for the traction 

control of high-speed trains are addressed in this paper. Based on the analysis of the 

operation process, an improved train traction analysis with the multi-mass modeling 

approach is presented, and the corresponding energy consumption model is investigated. 

By considering the issues of the passenger comfort and traveling time, an optimization 

algorithm for traction control of the high-speed trains is presented by using a multi-

objective-fitness particle swarm optimization technique. Simulations are performed with 

practical parameters of the CRH EMU (Electric Multiple Unit) and railway line, and the 

results demonstrate the performance of the proposed solution over the conventional 

traction calculation method. 
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1. Introduction 

In recent years, the high-speed railway in China is experiencing a rapid development 

based on an ambitious plan for the future railway transportation architecture, and 

operation length of the high-speed railway in China by the end of 2013 has reached 50% 

of the total length in the world [1,2]. Besides railway infrastructures, the high-speed 

Electronic Multiple Units (EMUs) are the decisive elements that undertake the 

supplement of transport capabilities. In the past decade, Chinese Train Control System 

(CTCS) was established and became a comprehensive system for the operation control, 

dispatching and safety assurance of EMUs [3]. Considering the optimization of transport 

services in a system level, there have been several key aspects addressed, including the 

traffic safety, efficiency, environmental friendliness, and multimodal interoperability, etc. 

Among these issues, the energy efficiency is another significant factor in the design and 

optimization of the railway operations, especially the energy consumption of each 

individual train [4]. The energy consumption of traction control for the high-speed trains 

depends on the train’s configuration, propulsion system, traction current, and the 

operation conditions. Since the trains have to operate according to plans from the railway 

dispatching system, the planned trajectories, which are used as the inputs to the driver 

guidance system or an automatic control system, describe the permitted motion of the 

trains, and hence the energy consumption could be identified and optimized from the 

planning of trajectories [5]. 

From the view of train trajectory optimization when considering the energy saving 

problem of traction control, there have been many results by the researchers and engineers. 
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Moritani [6] analyzed the trade off relation between the total consumed energy, the 

running time, the loss of traction motors and inverters. Feng [7] summarized the traction 

energy cost and transport operation time of high-speed trains with a range of target speeds 

through simulations. Li [8] proposed a green train scheduling model and fuzzy multi-

objective optimization algorithm to minimize the energy consumption, where the similar 

approaches can be found in [9,10]. For pursuing an identified effect for the trajectory or 

the speed-curve, some intelligent methods, including genetic algorithm [11], swarm 

intelligence [12] and neural network [13], have been introduced and improved in the 

energy efficient solutions. However, besides the assurance of energy efficiency, it is 

expected to achieve a comprehensive effect concerning several aspects based on a 

considerable level of energy capability, which means the adaptability, precision of the 

traction model and computation efficiency of the solution should also be concerned. 

In this paper, we focus on the traction energy consumption modeling of high-speed 

trains. A multi-mass approach is adopted to generate an optimized traction control 

solution by using the Particle Swarm Optimization (PSO) technique with an improved 

fitness. Simulations are performed to demonstrate the capability and potential of the 

proposed solution. The rest of this paper is organized as follows. Section 2 details the 

train traction model using PSO, and the results and discussions are given in Section 3. 

Finally, Section 4 concludes this paper. 

 

2. Design of Traction Control Method 
 

2.1. Traction Model and Energy Consumption Analysis 

The practical operation of a high-speed train corresponds to several issues, including 

the traction control, the dynamic characteristics of the train, the rail signaling control 

conditions and the experience and status of the drivers, etc. In order to evaluate and 

optimize the train operation process, the kinematic model of the high-speed trains is 

essential to provide an effective approach. Although there are some differences between 

CRH EMU and the existing railway locomotives [14], the stress condition and operation 

characteristics of the trains can be analyzed according to the Newton’s second law. 

Considering the operation modes of a CRH train and its force analysis, the resultant 

force is derived from the integration of the traction force, the braking force and the 

resistance force. The practical force situation of a train is determined by the operating 

condition concerning the kinematical limits, rail track situations and the operation 

conditions. A typical CRH train operation process can be divided into three operation 

conditions, where Figure 1 shows the speed-distance curve between two adjacent railway 

stations. 

(1) Traction condition 

The resultant force of the train is calculated through an integration of the traction force 

and the resistance, where the train’s speed increases with the running distance (e.g. b0-b1, 

b4-b5). 

(2) Braking condition 

The brake force and resistance contribute to a decreased train speed under the pull-into 

or the braking scenarios (e.g. b2-b3, b6-b7). 

(3) Intermediate condition 

The intermediate condition is used for keeping the train speed within a range from a 

lower bound to an upper bound, where the coasting or cruising could be involved (e.g. b1-

b2, b3-b4, b5-b6). This is an indispensable procedure between the traction and braking 

conditions. 
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Figure 1. Speed-Distance Curve of a Whole Trip between Two Stations 

Based on the above mentioned principle, all the operation conditions and 

corresponding force situations should be concentrated in the traction modeling process. 

Hence, the kinematic model of a high-speed train can be written as 

t b( ) ( ) ( ) ( , )
dv

v u f v u b v r v g x v
dx

        (1) 

where v  represents the train speed, x  is traveling distance from a certain reference 

track location, t t(0 1)u u   and b b( 1 0)u u    denote the traction coefficient and 

braking coefficient, and  ( ), ( ), ( ), ( , )f v b v r v g x v  are traction force, braking force, 

basic resistance and the additional resistance, respectively.  

In most traditional results of force analysis and kinematic modeling, only a single 

particle model is concerned for pursuing the simplicity and calculation efficiency. 

However, with a high resolution for analyzing the kinematics of the high-speed railway 

trains, the multi-mass EMU model is definitely required to illustrate the inherent 

mechanism. When using a CRH-2 EMU as an example, which usually consists of 8 

compartments including 4 motor units and 4 trailer units, the multi-mass model can be 

achieved as shown in Figure 2. 

 

 

Figure 2. Force Analysis of an EMU using the Multi-Mass Model 

At instant k , the resultant force of compartment i  can be calculated as 

t b( ) ( )ki ki ki ki kiF u f v u b v W Q         (2) 
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     (3) 
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 ( 1 ) 1, ( 1)k i i i i ki k iq x x           (4) 

where kiW  denotes the resistance force for the i th train compartment which is an 

integration of the basic and additional resistance, ( )k i jq   represents the interaction force 

between two adjacent compartments from i  to ( 1, 1)j j i i   , 1,i i   is the elasticity 

coefficient between two compartments, and kix  denotes the 1D location of compartment 

i  at instant k . 

Thus, the acceleration of the train compartment i  is 

(1 )

ki
ki

ki

F
a

m



     (5) 

where   is the rotary mass coefficient which is always set 0.06, and kim  denotes the 

weight of the i th compartment at instant k . 

When considering the train as a rigid body and the damping is ignored, each compartment 

is supposed to have the same acceleration as the whole EMU, which means that 

1 2 8k k k ka a a a         (6) 

Therefore, the interaction forces fulfill the following constraints when we just consider 

the longitudinal force, where 

( 1 ) ( 1) 0k i i k i iq q           (7) 

Under this circumstance, the force analysis of the whole EMU is realized by 

integrating the resultant force of all the compartments, which means that 

 
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     

  

  

 



 

        (8) 

The Eq. (8) shows a simplified multi-mass model of the CRH-2 EMU where the 

relative motion of two adjacent compartments, which can be represented by the relative 

displacement 1, ( 2, ,7)i ix i   according to 1,i i im x  , is replaced by the rigid body as 

Eq. (6). With the resultant force analysis, the train traction model could be derived 

according to the different conditions, where the traction, braking, coasting and cruising 

conditions are concerned. Here we use the traction acceleration 
f

ka  to describe the 

traction control strategies. 
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  (9) 

For the energy-saving purpose in determining the traction strategy, an energy 

consumption model is basically required to evaluate the energy situations of a certain 

traction process. The energy consumption index J  for a high-speed train can be 

calculated as 

bas auxJ J J       (10) 

where basJ  is the basic traction energy derived by the traction actions, which 

correspond to the traction and cruising conditions, and auxJ  represents the auxiliary 

energy component. These two components can be computed as 

bas 2

1

1
( ) ( )J f v vdt b v vdt


      (11) 

auxJ T       (12) 

where 1  is the coefficient referring the conversion from the electric energy to the 

mechanical energy, 2  refers the conversion from the mechanical energy to the electric 

energy,   is the auxiliary power of the train, and T  denotes the time consumption of the 

whole trip. 

To determine the optimal train traction solution, the whole trip is divided into several 

sub-sections based on the speed limit, and the energy consumption of a sub-section 

( )j j N  can be evaluated as the corresponding conditions, where 

8

2 2

end, init,(tra) 1
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i
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j

m
v v
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
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
   (13) 
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J s W m s r v g v m
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   
       

   
    (14) 

where tra,jJ  and cru,jJ  are energy consumption for traction and cruising conditions in 

the j th sub-section, i  means the number of train compartment, init , jv  and end, jv  denote 

the initial and target end speed of a sub-section, jv  is the average speed, and ( )jr v  and 

( )jg v  are the basic resistance and the additional resistance with an average speed jv . 

For simplification purposes, the energy consumption for the braking and coasting 

conditions are set as 
(brk) (coa) 0j jJ J  . 
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According to the above analysis, when the condition of each sub-section is determined, 

the total energy consumption during a whole travel can be derived by using a summation, 

which is a solution to Eq. (10) as 

( )

aux

1

j

N

j

j

J J J




      (15) 

where j  represents the condition mode of section j , which belongs to 

 tra,brk,coa,cru . 

 

2.2. Optimization Traction Control with PSO 

Different from the traditional traction control method using the single-particle EMU 

model, in this paper, the multi-mass EMU model is employed to ensure an effective 

description for traction operations. Under a target of energy-efficiency optimization, the 

energy consumption model can be used to estimate and determine a sequence of operation 

conditions and the corresponding condition conversion points. A condition sequence 

chain “traction-cruising-coasting-braking” is taken as the minimum unit to complete a 

whole trip. Besides that, speed limits determined by the rail track features (e.g. gradient, 

curvature, and signaling conditions). Uncertainty exists in the combination of operation 

condition sequences and the energy-saving target. Therefore, intelligent algorithms are 

introduced in this paper to determine an optimized solution of train traction control. 

Due to the constraint from the speed limit condition, there are mainly two steps to 

calculate the optimized traction control solution: 1) determination of sub-sections; and 2) 

calculation of the condition sequence. 

First, the determination of sub-sections is carried out according to the features of the 

track, including track length, speed limits and gradients. For the sub-section 

( 1,2, , )j j N with a length 
1j j js x x    and the gradient jgrad , where jx  

denotes longitudinal location of a train, the situation of speed limits 1( , )j jv v  between 

adjacent sub-sections may result in different strategies for the traction and operations. 

Figure 3 indicates the four situations. 

 

Figure 3. Operation Control Strategies under Different Speed Limit 
Situations 

When the speed limits of all the sub-sections are determined, the following problem is 

to determine the sub-sequence of a traction strategy for each sub-section, which is an 

integration of the above mentioned four operation conditions. According to the principles 

as shown in the Figure 3, the solution of a j th sub-sequence is described by a set of 

speed indices, including the initial speed init , jv , target speed tar, jv , initial braking speed 
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brk, jv  and the end speed end, jv . For the seven situations as shown in Figure 3, the pre-

condition for calculating an optimized sequence is listed as follows. 

init , tag, end, tag,

init , end, 1 tag, end, 1 tag,

init , end, 1 tag, 1 brk, end, 1

init , end, 1 tag, end,

1, 0, (0, ], (0, )

2, , (0, ], ( , )

3, , (0, ], (0, ), (0, )

4, ,

j j j j j

j j j j j j j

j j j j j j j j

j j j j

v v v v v

v v v v v v v

v v v v v v v v

v v v vj

 

  



  

  

   

  tag,

init , end, 1 tag, 1 brk, end, 2 1

init , end, 1 tag, 1 brk, end, 1

init , end, 1 tag, brk, end,

(0, ]

5, , (0, ], (0, ), ( , )

6, , (0, ], (0, ), (0, )

7, , 0, (0, ), 0
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j j j j j j j j j
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  
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   

   

   













 

 (16) 

Second, by matching the situations as (16), the state vector 
T

init, tag, brk, end,
ˆ ( , , , )j j j j jv v v vx  can be initialized and used for generating the optimized 

results. With the energy consumption model that is shown in Eq. (15), the energy 

efficiency of an operation sequence is a function of speed indices from  ˆ
jx . However, it 

is difficult to determine a minimum-energy solution since we cannot directly build a 

theoretical description for  ˆ
jx  and the object function minJ . Therefore, the particle 

swarm algorithm is considered for solving the energy-saving problem, where the widely 

used PSO (Particle Swarm Optimization) technique is involved. 

The PSO technique, which promises to provide an effective optimization capability 

with a simple implementation, is applied here to solve the optimization problem by using 

a single objective for minimizing the energy consumption. With the definition of the 

fitness function, the particle population is evaluated for determining the local and global 

optimization results. For the sub-section j , we use 
p

jx  and 
g

jx  to indicate local and 

global best locations. After initialization, the position ( )l

j ix  and velocity ( )l

j iμ  of the 

particle l  at the i th evolution step are defined for the iteration, where the population is 

with a constant value p p( )N l N  and the iteration is infinite under certain termination 

conditions. 

In each iteration step, the particles are updated as 

   p g

1 1 2 2( ) ( 1) ( ) ( 1) ( 1)l l l l

j j j j j ji i c r i i c r i       μ μ x x x x  (17) 

( ) ( 1) ( )l l l

j j ji i i  x x μ     (18) 

where   is the inertia weight, 1c  and 2c  denote the acceleration coefficients, and  1r  

and 2r  are the parameters with random values. 

By using the above principles to update the location and velocity of the particles, the 

global best location will gradually converge to the optimized value, on the basis of a 

suitable fitness function and the corresponding decision making logic. A constant target 

threshold   for the fitness is employed for terminating the iteration while the following 

criterion is fulfilled 
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g
( )

( ) , 1,2, ,
l
j j

l

i
i j N 


 

x x
      

 (19) 

 ,( )

aux,

1

( ) ( ) ( ) ( )j

N
ll l l

j j

j

i J i J i J i





     (20) 

which means the global best fitness is within the bound of a given threshold level. 

In order to constrain the calculation to avoid infinite iterations without fulfilling 

criterion (20), an assistant principle for breaking the PSO calculation is involved by using 

a maximum iteration step L , which indicates that the PSO iteration will be terminated 

when the current step exceeds the threshold (as i L ) and the criterion (19) is not 

fulfilled for all the past steps ( 1,2, , 1i L  ). 

As an important branch of public transportation services, the modern high-speed 

railway is concerning more on the service quality. With a basis of safety, the passenger 

comfort is also a decisive factor for ensuring the service acceptance, which should also be 

considered in the design of the optimized train traction operation strategies. According to 

the dynamics of high-speed trains, the degree of discomfort could be evaluated by the 

integral 

1

( )
( ) ( )

l
N

l l

j

j

d a i
i dt a i

dt




        (21) 

where ( )la i  denotes the acceleration of a train for the particle l  at step i , and ( )l

ja i  

is the equivalent difference of ( )la i  for each sub-section with different operation modes 

considered. 

The value of ( )l i  is inversely proportional to the comfort of passengers under the 

current traction control strategy, and hence, the optimization process should concern this 

restraint. Furthermore, the pre-condition for the train traction optimization should be 

considered due to the priori constraint from the operation planning of high-speed trains. 

Since the timetables for the trains have been designed before the operation activities, the 

optimization oriented to the energy efficiency or the passenger comfort should also take 

into account the constraint of the traveling time. The traveling time of a sub-section can 

be calculated as 

end,

init ,1

1 1
( )

( ) ( )

j

j

N v
l

l lv
j

T i dv dv
F i F i

       (22) 

where ( )lF i  denotes the resultant force of the train when the traction strategy from the 

l th particle is adopted. 

Based on the above analysis, it can be seen that the several factors should be 

considered in the design of an optimized traction solution, which requires an effective 

optimization method that could provide certain coverage to these issues. Besides the 

multi-objective optimization techniques, the single-objective optimization is with its 

advantage in simplicity for pursuing the unique solution by PSO, where the design of the 

fitness function is a key factor. Here we can integrate the three objectives using a linear 

weighing strategy, and thus a fitness function that is applied for evaluating the particles 

can be re-written as the following form 
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1 2 3

1 2 3

( ) ( ) ( )
( )

l l l
l J i i T i

i


   
  

      (23) 

where ( )l i  represents the improved fitness for the particle l  at step i , 1 , 2  and 

3  are the weight coefficients for tuning the fitness, 1 , 2  and 3 are normalization 

coefficients. 

The weight coefficients are decisive factors with the given models of these indices, 

since they can directly adjust the importance degrees of the three aspects under different 

scenarios. There can be the linear or nonlinear weight coefficient strategies for an 

enhanced fitness with the constraint 1 2 3    , such as 1 2 3 1      and 

2 2 2

1 2 3 1     . Value spaces of the two examples are shown in Figure 4. 

 

 

Figure 4. Value Spaces of Weight Coefficients (Left: Linear Strategy; Right: 
Nonlinear Strategy) 

By using the terminating principle for PSO with a fitness limit   or a maximum step 

L , the speed indices for each sub-section are extracted from the particle with a global 

best fitness, and thus the whole trajectory of the high-speed train in the trip is derived. 

Based on the force model and the parameters of the EMU, the optimized traction control 

solution is obtained. 

Algorithm 1. PSO-based train traction control solution. 
Begin 

1

. 
Input the rail track parameters  , ,j j js v grad . 

2

. 

Determine the sub-sections and the corresponding pre-conditions according to Eq. 

(16). 

3

. 
loop 

4

. 
   Initialize the population of particles  ,l l

j jx μ  for a sub-section j . 

5

. 
   Initialize the PSO parameters  1 2 1 2 1 2 3 1 2 3, , , , , , , , , , , ,c c r r L        . 

6

. 
   Set the local best  p

jx  and global best  g

jx  with the current position. 

7

. 
   loop 

8

. 

      Update the particles  ( ), ( )l l

j ji ix μ  within one iteration step as Eq. (17) and 

(18). 
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9

. 
      Evaluate the fitness ( )l i  of each particle as Eq. (23). 

1

0. 
      Update the local best fitness p ( )l  if p( ) ( )l i l  . 

1

1. 
      Update the local best fitness g  if p g( )l  . 

1

2. 
      If the condition g   or i L  is fulfilled, exit loop. 

1

3. 
   end loop 

1

4. 
   Determine the optimized state vector ˆ

jx  for sun-section j . 

1

5. 
   If all the sub-sections are calculated, exit loop. 

1

6. 
end loop 

1

7. 
Calculate the optimized trajectory and operation condition sequences using  ˆ

jx . 

1

8. 
Calculate the traction control sequences  f

ka  as Eq. (9). 

End 

According to the above mentioned PSO principles for the energy-efficient traction 

control issue for high-speed trains, the calculation procedure to generate an optimized 

solution can be summarized as Algorithm 1. From the indicated procedure and pre-

defined conditions, the optimized traction control solution can be derived by the off-line 

operations. The strategy for the weight coefficients in a particle fitness function promotes 

a compromise to comprehensive effectiveness under an original intention for the energy-

efficient control. 

 

3. Simulation and Analysis 

In this section, in order to validate the performance of the proposed algorithm, 

simulations are carried out with practical track conditions and parameters of Beijing-

Shanghai high-speed railway. The performances from different optimization methods are 

compared using specific EMU parameters. Three strategies for traction control 

optimization are involved: 

(1) Conventional traction control without optimization. 

(2) Optimized traction control using PSO with a single-objective-based fitness function. 

(3) Optimized traction control using PSO with a multi-objective-based fitness function. 

The length of the test track between two successive train stations is 158km, and the 

speed limits are pre-defined for the sub-sections as 300km/h, 200km/h and 300km/h 

respectively. The speed limits and gradient condition of the test track are shown in Figure 

5. 
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Figure 5. Speed Limits and Gradient Condition of the Track Section for Test 

First, without any optimization operation, we analyze the train operation process 

according to the conventional CRH train traction calculation model and algorithms [15]. 

The parameters applied for the traction calculation are listed in Table 1. 

Based on the obtained indices of the running process, the running curve of the whole 

trip is shown in Figure 6, which also depicts the switch of operation conditions and the 

acceleration of the train. To distinguish the different operation conditions, we use the 

values -1, 0 and 1 to represent the braking, intermediate and the traction conditions 

respectively. From the figures, it can be found that the derived traction control solution is 

capable of tracking the constraints of track conditions. Under a boundary operation 

scheme and the requirement of time planning, the conversion of operation conditions 

guarantees the fulfillment of the traffic principles and the EMU equipment characters. 

However, there are frequent switches of the control strategies during the intermediate 

conditions, and the value of acceleration is regularly fluctuated due to the idealization of 

track conditions and the identified operation strategies. 

Table 1. Parameter Settings in Conventional Train Traction Calculation 

Parameter Value 

EMU component mass kim (constant value) / t 52.5 

Gravitational acceleration / m/s
2
 9.81 

Rotary mass coefficient   0.06 

Basic resistance ( )r v  / N/kN 0.79+0.0064v+0.000115v
2
 

Maximum braking force ( )b v  / N/kN 81.55 

Length of sub-section 1 1s  / km 50.5 

Length of sub-section 2 2s  / km 42.38 

Length of sub-section 3 3s  / km 65.17 

 

 

Figure 6. Results of Train Traction Calculation using the Conventional 
Method 
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Second, in order to validate the presented PSO-based optimization algorithm for the 

EMU traction control, the PSO-based optimization methods are performed with the 

single-objective fitness strategy, where three indices are tested separately, including the 

energy consumption, passenger comfort and the traveling time. The parameters used in 

the PSO-based calculations are listed in Table 2. 

Table 2. Parameter Settings in the PSO-Based Calculation 

Parameter Value 

Inertia weight   0.8 

Acceleration coefficient 1c  1.494 

Acceleration coefficient 2c  1.494 

Particle population pN  50 

Maximum iteration step L  50 

Value space of particle velocity ( )l

j iμ  [-0.5, 0.5] 

Results from the single-objective-based PSO method are compared with the 

conventional traction strategy. Table 3 summarizes the results of the four strategies, 

where some additional indices are involved to evaluate the improvements. We use 

0 0[( ) / ] 100%J J J J     and 0 0[( ) / ] 100%       to represent the 

improvement of energy consumption and the comfort, where the subscript ‘0’ denotes 

results from the conventional strategy. T  indicates the deviation of the traveling time 

from the reference value. 

Table 3. Results of the Conventional and Single-Objective-Fitness-Based 
PSO Solutions 

Mode 

Energy 

consumption 
Discomfort 

Time 

consumption 

J  J    
  T  T  

Conventional 

traction 

2837.

4 
- 

81.52

1 
- 2351 - 

PSO with min 

( )lJ i  

2388.

7 

15.81

% 

43.19

2 

47.02

% 
2372 21 

PSO with min 

( )l i  

2432.

1 

14.28

% 

39.49

4 

51.55

% 
2363 12 

PSO with min 

( )lT i  

2447.

6 

13.74

% 

41.36

5 

49.26

% 
2346 -5 

From the comparisons, it can be found that the application of PSO technique provides 

great improvement to these indices over the conventional method. Within the same 

traction control scheme, the energy consumption is reduced to a certain extent by PSO 

optimization as well as the passenger discomfort. However, an increase of traveling 

distance becomes the expense for pursuing the energy and comfort targets. As the 

theoretical analysis, a balanced effectiveness of the optimization, under the premise of 

energy efficiency, is of great necessity. Hence, we further investigate the performance of 

a PSO-based calculation using a multi-objective fitness definition. A linear weight 

strategy with 1 2 3[ , , ] [0.5,0.25,0.25]     as shown in Figure 4 is adopted for test and 

analysis. Figure 7 shows the results of fitness from each particle during the iterations, and 

the evolution of the global best fitness is illustrated. The results of traction control with 
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the optimized solution are shown in Figure 8, where the speed-distance curve, operation 

condition and the traveling acceleration are all provided. 

 

  

Figure 7. Particle Fitness and the Global Best Value during the Iterations 

  

Figure 8. Results of Train Traction Calculation using the Multi-Objective-
Fitness PSO 

  

Figure 9. The Derived Traction Acceleration and the Corresponding Energy 
Consumption 

Compared with the results in Figure 6, there is not great difference in condition 

conversion when the optimization strategy is adopted. However, the fluctuation of the 

train’s acceleration is relatively eased, especially in the intermediate condition periods. 

Since coasting operations are involved and gradient constraints are concerned in the 

dynamic analysis of the resultant force, the derived speed profile is not as smooth as the 

ideal results. Consequently, the energy consumption is obviously reduced as the 

theoretical analysis. Figure 9 shows the required traction acceleration and the 

corresponding energy consumption with the traveling distance. 
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Table 4. Results of the Multi-Objective-Fitness-Based PSO Solutions 

1  2

 

3

 

Energy 

consumption 
Discomfort 

Time 

consumption 

J  J    
  T  T  

0.

5 

0.

5 
0 

2393.

6 

15.64

% 

41.86

9 

48.64

% 
2373 22 

0.

5 
0 

0.

5 

2430.

5 

14.34

% 

41.83

9 

48.68

% 
2353 2 

0.

5 

0.

25 

0.

25 

2408.

3 

15.12

% 

42.46

6 

47.91

% 
2364 13 

To illustrate the effectiveness of the weighted fitness strategies, two strategies, which 

only consider the comfort or the running time, are involved for comparison and validation. 

Table 4 depicts the weights and the optimization results. All the three strategies take full 

advantages of the proposed multi-fitness definition, which provides notable improvements 

of the energy consumption (with a maximum of 15.64%) and the discomfort level (with a 

maximum of 48.68%). Particularly, the results converge as the distribution of  i . 

Overall, the traction energy consumption of a whole trip definitely decreases with the 

weight 1  in an integrated fitness function, and a longer traveling time will be derived in 

general. 
 

4. Conclusions 

In this paper, we have proposed a PSO-based algorithm for generating the traction 

control solution for high-speed trains. In this approach, the multi-mass EMU model 

enhances the analysis of the resultant force during the different operation conditions. 

Based on the energy consumption model, particle swarm optimization is enabled with an 

improved fitness strategy, where the additional performance indices, including the 

passenger comfort and traveling time, could be covered. By this method, the train traction 

control solution can be computed though a finite iteration process, and some additional 

values are achieved as well as energy efficiency. The simulation results show that the 

presented approach is capable of optimizing the traction control within an identified 

operation scheme. In the future work, an optimization concerning the train tracing 

scenarios and railway signaling constraints will be investigated. Furthermore, the 

operation control using extended equipment models is expected for further evaluations. 
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