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Abstract 

Recent years have witness the development of cloud computing and the big data era, which 

brings up challenges to traditional decision tree algorithms. First, as the size of dataset 

becomes extremely big, the process of building a decision tree can be quite time consuming. 

Second, because the data cannot fit in memory any more, some computation must be moved to 

the external storage and therefore increases the I/O cost. To this end, we propose to 

implement a typical decision tree algorithm, C4.5, using MapReduce programming model. 

Specifically, we transform the traditional algorithm into a series of Map and Reduce 

procedures. Besides, we design some data structures to minimize the communication cost. We 

also conduct extensive experiments on a massive dataset. The results indicate that our 

algorithm exhibits both time efficiency and scalability. 
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1. Introduction 

Decision trees are one of the most popular methods for classification in various data 

mining applications [1-2] and assist the process of decision making [3]. A decision tree is a 

directed tree with a root node which has no incoming edges and all other nodes with exactly 

one incoming edges, known as decision nodes. At the training stage, each internal node split 

the instance space into two or more parts with the objective of optimizing the performance of 

classifier. After that, every path from the root node to the leaf node forms a decision rule to 

determine which class a new instance belongs to.  

One of the well-known decision tree algorithms is C4.5 [4-5], an extension of basic ID3 

algorithm [6]. The improvements of C4.5 include: (1) employ information gain ratio instead 

od information gain as a measurement to select splitting attributes; (2) not only discrete 

attributes, but also continuous ones can be handled; (3) handling incomplete training data 

with missing values; (4) prune during the construction of trees to avoid over-fitting [7-8].   

However, with the increasing development of cloud computing [9] as well as the big data 

challenge [10-12], traditional decision tree algorithms exhibit multiple limitations. First and 

foremost, building a decision tree can be very time consuming when the volume of dataset is 

extremely big, and new computing paradigm should be applied for clusters. Second, although 

parallel computing [13] in clusters can be leveraged in decision tree based classification 

algorithms [14-15], the strategy of data distribution should be optimized so that required data 

for building one node is localized and meanwhile the communication cost of minimized. 

To this end, in this paper we propose a distributed implementation of C4.5 algorithm using 

MapReduce computing model, and deploy it on a Hadoop cluster. Our goal is to accelerate 

the construction of decision trees and also ensure the accuracy of classification by 
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leveraging parallel computing techniques. Specifically, our contributions can be 

summarized as follows:  

We propose several data structures customized for distributed parallel computing 

environment;  

We propose a MapReduce implementation of original C4.5 algorithm with a pipeline 

of Map and Reduce procedures;  

We empirically prove the efficiency and scalability of our method with extensive 

experiments on a synthetical massive dataset.  

The remains of this paper are organized as follows. Section 2 provides some 

preliminaries. Then our MapReduce implementation of C4.5 is proposed in Section 3. 

Empirical experiments are conducted in Section 4. Finally, the paper is concluded in 

Section 5. 

 

2. Preliminaries  

In this section, we will briefly introduce the background of decision trees and C4.5 

algorithm, as well as MapReduce computing model.  

 

2.1. Decision Trees and C4.5 

A decision tree is a classifier which conducts recursive partition over the instance space. A 

typical decision tree is composed of internal nodes, edges and leaf nodes. Each internal node 

is called decision node representing a test on an attribute or a subset of attributes, and each 

edge is labeled with a specific value or range of value of the input attributes. In this way, 

internal nodes associated with their edges split the instance space into two or more partitions. 

Each leaf node is a terminal node of the tree with a class label. For example, Figure 1 

provides an illustration of a basic decision tree, where circle means decision node and square 

means leaf node. In this example, we have three splitting attributes, i.e., age, gender and 

criteria 3, along with two class labels, i.e., YES and NO. Each path from the root node to leaf 

node forms a classification rule. 

 

        

Figure 1. Illustration of Decision Tree 
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The general process of building a decision tree is as follows. Given a set of training data, 

apply a measurement function onto all attributes to find a best splitting attribute. Once the 

splitting attribute is determined, the instance space is partitioned into several parts. Within 

each partition, if all training instances belong to one single class, the algorithm terminates. 

Otherwise, the splitting process will be recursively performed until the whole partition is 

assigned to the same class. Once a decision tree is built, classification rules can be easily 

generated, which can be used for classification of new instances with unknown class labels.  

C4.5 [4] is a standard algorithm for inducing classification rules in the form of decision 

tree. As an extension of ID3 [5], the default criteria of choosing splitting attributes in C4.5 is 

information gain ratio. Instead of using information gain as that in ID3, information gain ratio 

avoids the bias of selecting attributes with many values. 

 

                 

Figure 2. C4.5 Algorithm Description 
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Let C  denote the number of classes, and ),( jSp  is the proportion of instances in S  

that are assigned to j -th class. Therefore, the entropy of attribute S  is calculated as: 
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where )( STValues  is the set of values of S  in T , sT  is the subset of T  induced by S ,  
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Therefore, the information gain ratio of attribute S  is defined as: 
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The whole process of C4.5 algorithm is described in Algorithm 1. The information gain 

ratio criteria computation is performed in lines 11~21 using above equations, and a recursive 

function call is done in Line 25.  

 

2.2. MapReduce 

MapReduce programming model is used for parallel and distributed processing of large 

datasets on clusters [16]. There are two basic procedures in MapReduce: Map and Reduce. 

Typically, the input and output are both in the form of key/value pairs. As shown in 

Figure 2, after the input data is partitioned into splits with appropriate size, Map 

procedure takes a series of key/value pairs, and generates processed key/value pairs, 

which are passed to a particular reducer by certain partition function; Later, after data 

sorting and shuffling, the Reduce procedure iterates through the values that are 

associated with specific key and produces zero or more outputs.  
 

                

Figure 3. Description of MapReduce Programming Model 
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As an open source implementation of MapReduce, Hadoop [17] has two major 

components: HDFS (Hadoop Distributed File Systems) [18] and Hadoop MapReduce. The 

architecture is illustrated in Figure 4, where NameNode is the master node of HDFS handling 

metadata, and DataNode is slave node with data storage in terms of blocks. Similarly, the 

master node of Hadoop MapReduce is called JobTracker, which is in charge of managing and 

scheduling several tasks, and the slave node is called TaskTracker, where Map and Reduce 

procedures are actually performed. A typical deployment of Hadoop is to assign HDFS node 

and MapReduce node on the same physical computer for the consideration of localization and 

moving computation to data [19-20]. As you will see in Section 4, we apply this deployment 

in our experiments. 

 

3. Proposed Algorithm  

In this section, we present our proposed MapReduce implementation of C4.5 algorithm. 

We first introduce several data structures, and then present the MapReduce implementation of 

C4.5 in the form of a pipeline of Map and Reduce procedures. 

 

                

Figure 4. Architecture of HDFS 
 

3.1. Data Structure  

In a big data environment, the dataset is quite massive, and the data required for building 

decision trees is typically dynamic. For example, generating a node needs not only the 

information of itself but also data from other nodes, and therefore introduce communication 

cost between nodes. Besides, when the dataset cannot fit in memory, reading data from 

external storage also increases the I/O cost. To this end, designing appropriate data structures 

for our distributed parallel algorithm is certainly necessary. A fundamental assumption is that 

the memory is not enough to fit the whole dataset.  

The first data structure is attribute table, which stores the basic information of attribute a , 

including the row identifier of instance idrow_ , values of attribute )(avalues and class 

labels of instances c .  

The second one is count table, which computes the count of instances with specific class 

labels if split by attribute a . That is, two fields are included: class label c and a count cnt .  

The last one is hash table, which stores the link information between tree nodes 
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idnode _  and idrow_ , as well as the link between parent node idnode _  and its 

branches ,..._,_ 21 idsubnodeidsubnode . 

Note that on a distributed parallel environment, dataset vertically partitioned to maximally 

preserve localization characteristic for the sake of efficiency.  In our implementation, we 

split the dataset by equally assign attributes to several nodes. Suppose we have M attributes 

and N nodes, and therefore there are [M/N] on first N-1 nodes, and the remaining attributes 

are stored on the last node.  

 

3.2 MapReduce Implementation 

Now we discuss how to implement C4.5 algorithm using above three data structures. 

Generally, the whole process is composed of four steps: data preparation, selection, update 

and tree growing. 

 

  

Figure 5. Description of Data Preparation 
 

3.2.1. Data Preparation: Before executing the algorithm, the first thing we need is to convert 

the traditional relational table based data into above three data structure for further 

MapReduce processing. As shown in algorithm 2, procedure MAP_ATTRIBUTE transforms 

the instance record into attribute table with attribute ),...2,1( Mja j   as key, and 

idrow_  and class label c  as values. Then, REDUCE_ATTRIBUTE computes the number 

of instances with specific class labels if split by attribute ja , which forms the count table. 

Note that hash table is set to null at the beginning of process. 

 

  

Figure 6. Description of Attribute Selection 
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3.2.2. Selection: After we have attribute table and count table, the first step is to select best 

attribute besta . As shown in Algorithm 3, it has one Map function and two Reduce functions. 

First, the REDUCE_POPULATION procedure takes the number of instances for each 

attribute/value pair to aggregate the total size of records for given attribute ja . Next, after 

MAP_COMPUTATION procedure computes the information and split information of ja ,  

procedure REDUCE_COMPUTATION computes the information gain ratio, just as described 

in Lines 11~21 in Algorithm 1. Last, ja  with the maximum value of )( jaGainRatio  will 

be selected as splitting attribute besta . 

 

  

Figure 7. Description of Update Tables 
 

3.2.3. Update: Now we have to update count table and hash table. As shown in Algorithm 4, 

Procedure MAP_UPDATE_COUNT reads a record from attribute table with key value equals 

to besta , and emits the count of class labels. Procedure MAP_HASH assigns 

idnode _ based on a hash value of besta  to make sure that records with same values are 

split into the same partition. 

3.2.4. Tree Growing: Since we generate nodes in Algorithm 4, now we need to grow the 

decision tree by building linkage between nodes, as shown in Algorithm 5. For the next 

iteration, compute idnode _  as shown in Line 2. If the value remains the same, it means 

that idnode _  is a leaf node, as shown in Lines 3~5. Otherwise, a new sub node is attached 

in Lines 6~7.  
 

 

Figure 8. Description of Tree Growing 
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The whole process is a MapReduce pipeline with a sequential combination of Map and 

Reduce procedures described above. Among them, only the data preparation is a one time task, 

and the remaining are repetitive. The terminal condition is all idnode _  become leaf nodes, 

and then a decision tree is built. 

 

4. Experiments   

In this section, we provide experiments to evaluate the performance of our MapReduce 

implementation of C4.5 algorithm.  

We have a Hadoop cluster deployed on 4 PCs with 2.11 GHz dual-core CPU, 1G RAM and 

200G hard disk. We use each core as a Hadoop node, and thus we have 8 nodes. On each 

physical core, both a HDFS and MapReduce nodes are deployed. We let one of them as 

HDFS NameNode and MapReduce JobTracker (i.e., master), and the remaining nodes act as 

HDFS DataNode and MapReduce TaskTracker (i.e., slave).  

Since the efficiency of C4.5 is theoretically and empirically proved, in our study we are 

concerned with the time efficiency of parallel version of C4.5 in big data environment. Given 

the fact that there lacks of a massive dataset for classification, we use a synthetic data 

collection. In our dataset, there are 6 nine attributes, which is described in table 1, and 2 class 

labels A and B. The number of training instances in our experiment varies from 0.5 to 3 

millions. Note that: (1) we have   14/6   on first three PCs, and the last one stores 3 

attributes; (2) on each dual-core PC, memory is shared as in [21]. 

 

Table 1. Attributes Description in Dataset 

Attribute  Description  

salary Values between 1,000 and 150,000 

age Valued between 20 and 80 

gender Male or female 

loan Values between 0 and 500,000 

commission 
If salary ≦ 60,000, commission is 0; 

otherwise, commission = 2%*salary 

marital status Single, married or divorced 

 

4.1. Performance on Single Node 

In this subsection, we compare the performance of MapReduce implementation with the 

original C4.5 on single node. Figure 9 illustrates the results, from which we have the 

following observations. First, the larger the dataset is, the more time consuming it is to build 

the decision tree. Second, the execution time of our MapReduce based algorithm is much less 

than the original C4.5 algorithm as the size of dataset increases. Therefore, it is proved that 

our proposed method outperforms the sequential version even on a single node environment. 
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Figure 9. Performance on Single Node with Various Numbers of Instances 
 

4.2. Scalability  

Now we evaluate the performance of proposed MapReduce based C4.5 algorithm in a 

distributed parallel environment. The scalability evaluation includes two aspects: (1) 

performance with different numbers of nodes, and (2) performance with different size of 

training datasets. As mentioned earlier, we have 8 nodes totally on 4 physical computers, and 

our training dataset varies from 0.5 to 3 millions in terms of the number of instances. 

 

 

Figure 10. Performance on Different Numbers of Nodes with Specific Sample 
 

First, we test the scalability performance on different numbers of nodes given specific 

training dataset. Figure 10 illustrates the execution time of our MapReduce based C4.5 

algorithm with different numbers of nodes when the number of instances is 1, 2 and 3 

millions respectively. We can observe that the overall execution time decreases when the 

number of nodes increases. This indicates that the more nodes are involved for computing, the 

more efficient the algorithm will be. 
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Figure 11. Performance for Different Sample Size on Different Numbers of 
Nodes 

 

On the other hand, to evaluate the scalability with various sizes of training data, we also 

conduct experiment on different sample datasets. Figure 11 shows the execution time of 

different size of sample datasets, where the legend denotes the numbers of instances in 

training data. Moreover, Figure 12 provides the speedup performance of various numbers of 

training instances as the number of nodes increases, where speedup is a popular measurement 

of parallel algorithm defined as the ratio of execution time of sequential algorithm to that of 

the parallel algorithm with specific numbers of processors.  

From Figures 11 and 12, we can see that: (1) the larger the training dataset we use, the 

more cost of execution time; (2) the more nodes we use, the less of execution time; (3) if 

enough nodes are leveraged, even the size of dataset is big, the performance can be close to 

the optimal one. For example, given 3.0 millions of training data, if we use 8 nodes, the 

execution time is close to that of the smallest dataset, i.e., 0.5 millions. That is to say, by 

leveraging more nodes, we can solve big data problem just like the old times. 
 

 

Figure 12. Speedup for Different Sample Size on Different Numbers of Nodes 
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5. Conclusions  

In this paper, we propose a MapReduce implementation of C4.5 algorithm. The motivation 

is that with the increasingly development of cloud computing and big data, traditional 

sequential decision tree algorithms cannot fit any more. For example, as the size of training 

data grows, the process of building decision trees can be very time consuming. Besides, with 

the volume of dataset increases, the algorithm has a high cost on I/O operation because the 

the required data cannot fit in memory. To solve above challenges, we therefore propose a 

parallel version of C4.5 based on MapReduce. In order to evaluate the efficiency of our 

method, we also conduct extensive experiments on a synthetic massive dataset. The empirical 

results indicate that our MapReduce implementation of C4.5 algorithm exhibit both time 

efficiency and scalability. 

In future works, we might want to further investigate other typical data mining and 

machine learning algorithms using MapReduce.  
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