Eur. J. Entomol. 113: 579-586, 2016 | DOI: 10.14411/eje.2016.078

Plant volatiles challenge inhibition by structural analogs of the sex pheromone in Lobesia botrana (Lepidoptera: Tortricidae)Original article

Albert SANS1, Miguel MORÁN2, Magí RIBA1, Ángel GUERRERO3, Jaume ROIG2, César GEMENO2
1 University of Lleida, Department of Chemistry, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; e-mails: sans@quimica.udl.cat, mriba@quimica.udl.cat
2 University of Lleida, Department of Crop and Forest Sciences, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; e-mails: miguel_moran1@yahoo.com.mx, jootlle@hotmail.com, cesar.gemeno@pvcf.udl.cat
3 Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; e-mail: angel.guerrero@iqac.csic.es

Plant volatiles can synergize the response to moth pheromone. Synthetic pheromone analogs, in turn, have the opposite effect in reducing pheromone attractiveness. To determine how these two types of stimuli interact and influence male moth behaviour, we performed wind tunnel experiments on the grapevine moth, Lobesia botrana. We noticed that a blend of host plant volatiles [(E)-β-caryophyllene, 1-hexanol, (Z)-3-hexenyl acetate and 1-octen-3-ol in a 100:20:10:5 ratio] significantly increased the response of males to an optimized blend of sex pheromone [(7E,9Z)-dodeca-7,9-dienyl acetate (E7,Z9-12:Ac), (7E,9Z)- dodeca-7,9-dienol (E7,Z9-12:OH) and (Z)-9-dodecenyl acetate (Z9-12:Ac)] in a 100:10:2 ratio. However, the response of males to the natural attractant was significantly reduced by two analogs [(9E,11Z)-tetradeca-9,11-dien-2-one (MK 2) and [(9E,11Z)-1,1,1-trifluoro-tetradeca-9,11-dien-2-one (TFMK 3)], of the major component of the sex pheromone of the insect (E7,Z9-12:Ac). When both stimuli were tested on males at pheromone:analog:plant volatile blend 1:100:1000 ratio, the plant blend offset the inhibitory effect induced by TFMK 3 but not that of MK 2. Our results show for the first time that under laboratory conditions plant volatiles can prevent inhibition by a pheromone analog.

Keywords: Lepidoptera, Tortricidae, Lobesia botrana, plant volatiles, inhibition, structural analogs, sex pheromone

Received: July 7, 2016; Revised: November 25, 2016; Accepted: November 25, 2016; Published online: December 30, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SANS, A., MORÁN, M., RIBA, M., GUERRERO, Á., ROIG, J., & GEMENO, C. (2016). Plant volatiles challenge inhibition by structural analogs of the sex pheromone in Lobesia botrana (Lepidoptera: Tortricidae). EJE113, Article 579-586. https://doi.org/10.14411/eje.2016.078
Download citation

References

  1. Albans K.R., Baker R., Jones O.T., Jutsum A.R. & Turnbull M.D. 1984: Inhibition of response of Heliothis virescens to its natural pheromone by anti-pheromones. - Crop Prot. 3: 501-506. Go to original source...
  2. Ammagarahalli B. & Gemeno C. 2015: Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae). - J. Insect Physiol. 81: 118-128. Go to original source...
  3. Arn H., Rauscher S., Guerin P. & Buser H.R. 1988: Sex pheromone blends of 3 tortricid pests in European vineyards. - Agric. Ecosyst. Environ. 21: 111-117. Go to original source...
  4. Bau J., Martinez D., Renou M. & Guerrero A. 1999: Pheromone-triggered orientation flight of male moths can be disrupted by trifluoromethyl ketones. - Chem. Senses 24: 473-480. Go to original source...
  5. Campanacci V., Longhi S., Nagnan-Le Meillour P., Cambillau C. & Tegoni M. 1999: Recombinant pheromone binding protein 1 from Mamestra brassicae (MbraPBP1) - Functional and structural characterization. - Eur. J. Biochem. 264: 707-716. Go to original source...
  6. Deisig N., Dupuy F., Anton S. & Renou M. 2014: Responses to pheromones in a complex odor world: sensory processing and behavior. - Insects 5: 399-422. Go to original source...
  7. Dominguez A., Puigmarti M., Bosch M.P., Rosell G., Crehuet R., Ortiz A., Quero C. & Guerrero A. 2016: Synthesis, functional assays, electrophysiological activity, and field tests of pheromone antagonists of the tomato leafminer, Tuta absoluta. - J. Agric. Food Chem. 64: 3523-3532. Go to original source...
  8. Duran I., Parrilla A., Feixas J. & Guerrero A. 1993: Inhibition of antennal esterases of the Egyptian armyworm Spodoptera littoralis by trifluoromethyl ketones. - Bioorg. Med. Chem. Lett. 3: 2593-2598. Go to original source...
  9. El-Sayed A., Godde J., Witzgall P. & Arn H. 1999: Characterization of pheromone blend for grapevine moth, Lobesia botrana by using flight track recording. - J. Chem. Ecol. 25: 389-400. Go to original source...
  10. Feixas J., Prestwich G.D. & Guerrero A. 1995: Ligand specificity of pheromone binding proteins of the processionary moth. - Eur. J. Biochem. 234: 521-526. Go to original source...
  11. Gago R. 2012: Síntesis y actividad de nuevos antagonistas de feromona sexual de insectos plaga. PhD Thesis, University of Barcelona, 215 pp.
  12. Giner M., Sans A., Riba M., Bosch D., Gago R., Rayo J., Rosell G. & Guerrero A. 2009: Development and biological activity of a new antagonist of the pheromone of the codling moth Cydia pomonella. - J. Agric. Food Chem. 57: 8514-8519. Go to original source...
  13. Girling R.D. & Cardé R.T. 2007: Analysis and manipulation of the structure of odor plumes from a piezo-electric release system and measurements of upwind flight of male almond moths, Cadra cautella, to pheromone plumes. - J. Chem. Ecol. 33: 1927-1945. Go to original source...
  14. Gurba A. & Guerin P.M. 2016: Short-chain alkanes synergise responses of moth pests to their sex pheromones. - Pest Manag. Sci. 72: 870-876. Go to original source...
  15. Hillier N.K. & Vickers N.J. 2011: Mixture interactions in moth olfactory physiology: Examining the effects of odorant mixture, concentration, distal stimulation, and antennal nerve transection on sensillar responses. - Chem. Senses 36: 93-108. Go to original source...
  16. Ioriatti C., Anfora G., Tasin M., De Cristofaro A., Witzgall P. & Lucchi A. 2011: Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). - J. Econ. Entomol. 104: 1125-1137. Go to original source...
  17. Ivaldi-Sender C. 1974: Techniques simples pour un élevage permanent de la tordeuse orientale, Grapholita molesta (Lepidoptera: Tortricidae) sur milieu artificiel. - Ann. Zool. Ecol. Anim. 6: 337-343.
  18. Knight A.L., Light D.M. & Trimble R.M. 2011: Identifying (E)-4,8-dimethyl-1,3,7-nonatriene plus acetic acid as a new lure for male and female codling moth (Lepidoptera: Tortricidae). - Environ. Entomol. 40: 420-430. Go to original source...
  19. Knight A., Cichon L., Lago J., Fuentes-Contreras E., Barros-Parada W., Hull L., Krawczyk G., Zoller B., Hansen R., Hilton R. & Basoalto E. 2014: Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomones. - J. Appl. Entomol. 138: 783-794. Go to original source...
  20. Knudsen G.K. & Tasin M. 2015: Spotting the invaders: A monitoring system based on plant volatiles to forecast apple fruit moth attacks in apple orchards. - Basic Appl. Ecol. 16: 354-364. Go to original source...
  21. Landolt P.J. & Phillips T.W. 1997: Host plant influences on sex pheromone behavior of phytophagous insects. - Annu. Rev. Entomol. 42: 371-391. Go to original source...
  22. Liljefors T., Thelin B. & Vanderpers J.N.C. 1984: Structure activity relationships between stimulus molecule and response of a pheromone receptor cell in Turnip moth, Agrotis segetum - Modifications of the acetate group. - J. Chem. Ecol. 10: 1661-1675. Go to original source...
  23. Malo E.A., Rojas J.C., Gago R. & Guerrero A. 2013: Inhibition of the responses to sex pheromone of the fall armyworm, Spodoptera frugiperda. - J. Insect Sci. 13: 134. Go to original source...
  24. Muñoz L., Bosch M.P., Batllori L., Rosell G., Bosch D., Guerrero A. & Avilla J. 2011: Synthesis of allylic trifluoromethyl ketones and their activity as inhibitors of the sex pheromone of the leopard moth, Zeuzera pyrina L. (Lepidoptera: Cossidae). - Pest Manag. Sci. 67: 956-964. Go to original source...
  25. Ochieng S.A., Park K.C. & Baker T.C. 2002: Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. - J. Comp. Physiol. (A) 188: 325-333. Go to original source...
  26. Parrilla A. & Guerrero A. 1994: Trifluoromethyl ketones as inhibitors of the processionary moth sex pheromone. - Chem. Senses 19: 1-10. Go to original source...
  27. Plettner E. 2002: Insect pheromone olfaction: New targets for the design of species-selective pest control agents. - Curr. Med. Chem. 9: 1075-1085. Go to original source...
  28. Pophof B., Gebauer T. & Ziegelberger G. 2000: Decyl-thio-trifluoropropanone, a competitive inhibitor of moth pheromone receptors. - J. Comp. Physiol. (A) 186: 315-323. Go to original source...
  29. Prestwich G.D. 1987: Chemical studies of pheromone reception and catabolism. In Prestwich G.D. & Blomquist G.J. (eds): Pheromone Biochemistry. Academic Press, London, pp. 473-527. Go to original source...
  30. Prestwich G.D. & Streinz L. 1988: Haloacetate analogs of pheromones: effects on catabolism and electrophysiology in Plutella xylostella. - J. Chem. Ecol. 14: 1003-1021. Go to original source...
  31. Quero C., Camps F. & Guerrero A. 1995: Behavior of processionary males (Thaumetopoea pityocampa) induced by sex pheromone and analogs in a wind tunnel. - J. Chem. Ecol. 21: 1957-1969. Go to original source...
  32. R Development Core Team 2015: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL: http://www.R-project.org/.
  33. Reddy G.V.P. & Guerrero A. 2004: Interactions of insect pheromones and plant semiochemicals. - Trends Plant Sci. 9: 253-261. Go to original source...
  34. Reinecke A. & Hilker M. 2014 Plant semiochemicals - Perception and behavioural responses by insects. In Voelckel C. & Jander G. (eds): Annual Plant Reviews. Vol. 47: Insect-Plant Interactions. John Wiley & Sons, Chichester, pp. 115-153. Go to original source...
  35. Renou M. & Guerrero A. 2000: Insect parapheromones in olfaction research and semiochemical-based pest control strategies. - Annu. Rev. Entomol. 45: 605-630. Go to original source...
  36. Renou M., Lucas P., Malo E., Quero C. & Guerrero A. 1997: Effects of trifluoromethyl ketones and related compounds on the EAG and behavioural responses to pheromones in male moths. - Chem. Senses 22: 407-416. Go to original source...
  37. Riba M., Sans A., Bau P., Grolleau G., Renou M. & Guerrero A. 2001: Pheromone response inhibitors of the corn stalk borer Sesamia nonagrioides. Biological evaluation and toxicology. - J. Chem. Ecol. 27: 1879-1897. Go to original source...
  38. Riba M., Sans A., Solé J., Muñoz L., Bosch M.P., Rosell G. & Guerrero A. 2005: Antagonism of pheromone response of Ostrinia nubilalis males and implications on behavior in the laboratory and in the field. - J. Agric. Food Chem. 53: 1158-1165. Go to original source...
  39. Rosell G., Herrero S. & Guerrero A. 1996: New trifluoromethyl ketones as potent inhibitors of esterases: 19F NMR spectroscopy of transition state analog complexes and structure-activity relationships. - Biochem. Biophys. Res. Commun. 226: 287-292. Go to original source...
  40. Solé J., Sans A., Riba M., Rosa E., Bosch M.P., Barrot M., Palencia J., Castellà J. & Guerrero A. 2008a: Reduction of damage by the Mediterranean corn borer, Sesamia nonagrioides, and the European corn borer, Ostrinia nubilalis, in maize fields by a trifluoromethyl ketone pheromone analog. - Entomol. Exp. Appl. 126: 28-39. Go to original source...
  41. Solé J., Sans A., Riba M., Rosell G., Rosa E., Muñoz L., Bosch M.P. & Guerrero A. 2008b: Differential activity of non-fluorinated and fluorinated analogues of the European corn borer pheromone. - Chemoecology 18: 99-108. Go to original source...
  42. Szendrei Z. & Rodriguez-Saona C. 2010: A meta-analysis of insect pest behavioral manipulation with plant volatiles. - Entomol. Exp. Appl. 134: 201-210. Go to original source...
  43. Varela N., Avilla J., Anton S. & Gemeno C. 2011: Synergism of pheromone and host-plant volatile blends in the attraction of Grapholita molesta males. - Entomol. Exp. Appl. 141: 114-122. Go to original source...
  44. Vogt R.G., Riddiford L.M. & Prestwich G.D. 1985: Kinetic properties of a sex pheromone-degrading enzyme - the sensillar esterase of Antheraea polyphemus. - Proc. Natl. Acad. Sci. USA 82: 8827-8831. Go to original source...
  45. von Arx M., Schmidt-Busser D. & Guerin P.M. 2011: Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana. - J. Insect Physiol. 57: 1323-1331. Go to original source...
  46. von Arx M., Schmidt-Busser D. & Guerin P.M. 2012: Plant volatiles enhance behavioral responses of grapevine moth males, Lobesia botrana to sex pheromone. - J. Chem. Ecol. 38: 222-225. Go to original source...
  47. Witzgall P. & Arn H. 1990: Direct measurement of the flight behavior of male moths to calling females and synthetic sex pheromones. - Z. Naturforsch. (C) 45: 1067-1069. Go to original source...
  48. Witzgall P., Tasin M., Buser H.R., Wegner-Kiss G., Mancebon V.S.M., Ioriatti C., Backman A.C., Bengtsson M., Lehmann L. & Francke W. 2005: New pheromone components of the grapevine moth Lobesia botrana. - J. Chem. Ecol. 31: 2923-2932. Go to original source...
  49. Witzgall P., Kirsch P. & Cork A. 2010: Sex pheromones and their impact on pest management. - J. Chem. Ecol. 36: 80-100. Go to original source...
  50. Yu H.L., Feng J.L., Zhang Q.W. & Xu H.L. 2015: (Z)-3-hexenyl acetate and 1-undecanol increase male attraction to sex pheromone trap in Grapholita molesta (Busck) (Lepidoptera: Tortricidae). - Int. J. Pest Manag. 61: 30-35. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.