Folia Parasitologica 66:016 (2019) | DOI: 10.14411/fp.2019.016

Measuring mitochondrial respiration in adherent cells infected with Trypanosoma cruzi Chagas, 1909 using Seahorse extracellular flux analyser

Laura Maria González-Ortiz*, Juana Patricia Sánchez-Villamil*, Mike A. Celis-Rodríguez, Giovanni Lineros, Sandra Sanabria-Barrera, Norma C. Serrano, Melvin Y. Rincon, Paula K. Bautista-Nino
Traslational Biomedical Research Group, Centro de Investigaciones, Fundación Cardiovascular de Colombia, Santander, Colombia.
These authors contributed equally to this work

Infection with Trypanosoma cruzi Chagas, 1909 is reported to increase the production of reactive oxygen species in patients with Chagas disease. Mitochondria dysfunction, host inflammatory response and inadequate antioxidant response are described as the main factors leading to oxidative stress during acute and chronic stages of the disease. The Seahorse XFe24 extracellular flux platform allows energy metabolism determination through mitochondrial respiration and glycolysis measurements. XFe24 platform can be used in in vitro models of T. cruzi-infected cells, which allow the assessment and even modulation of endogenous conditions of infected cells, generating readouts of real-time cellular bioenergetics changes. In this protocol, we standardised the use of XFe24 technology in T. cruzi infected AC16 cardiomyocytes and SGHPL-5 trophoblasts. In addition, we provide a list of optimised assay specifications, advantages and critical steps to be considered during the process. Cardiomyocytes and trophoblasts are attractive target cells to evaluate the metabolic environment in acute, chronic and congenital Chagas transmission scenarios.

Keywords: Chagas disease, trophoblastic cells, cardiomyocytes, cellular respiration, mitochondrial bioenergetics.

Received: September 19, 2019; Accepted: May 6, 2019; Published online: October 10, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
González-Ortiz, L.M., Sánchez-Villamil, J.P., Celis-Rodríguez, M.A., Lineros, G., Sanabria-Barrera, S., Serrano, N.C., Rincon, M.Y., & Bautista-Nino, P.K. (2019). Measuring mitochondrial respiration in adherent cells infected with Trypanosoma cruzi Chagas, 1909 using Seahorse extracellular flux analyser. Folia Parasitologica66, Article 2019.016. https://doi.org/10.14411/fp.2019.016
Download citation

References

  1. Andrade D., Serra R., Svensjo E., Lima A.P., Ramos E.S., Jr., Fortes F.S., Morandini A.C., Morandi V., Soeiro Mde N., Tanowitz H.B., Scharfstein J. 2012: Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br. J. Pharmacol. 165: 1333-1347. Go to original source... Go to PubMed...
  2. Aridgides D., Salvador R., PereiraPerrin M. 2013: Trypanosoma cruzi coaxes cardiac fibroblasts into preventing cardiomyocyte death by activating nerve growth factor receptor TrkA. PLoS ONE 8: e57450. Go to original source... Go to PubMed...
  3. Ayo C.M., Dalalio M.M., Visentainer J.E., Reis P.G., Sippert E.A., Jarduli L.R., Alves H.V., Sell A.M. 2013: Genetic susceptibility to Chagas disease: an overview about the infection and about the association between disease and the immune response genes. Biomed. Res. Int. 2013: 284729. Go to original source... Go to PubMed...
  4. Ba X., Gupta S., Davidson M., Garg N.J. 2010: Trypanosoma cruzi induces the reactive oxygen species-PARP-1-RelA pathway for up-regulation of cytokine expression in cardiomyocytes. J. Biol. Chem. 285: 11596-11606. Go to original source... Go to PubMed...
  5. Benirschke K., Kaufmann, P., Baergen R.N. 2006: Pathology of the Human Placenta, Fifth Edition. Springer-Verlag New York, 1,050 pp.
  6. Bonney K.M., Engman D.M. 2008: Chagas heart disease pathogenesis: one mechanism or many? Curr. Mol. Med. 8: 510-518. Go to original source... Go to PubMed...
  7. Caradonna K.L., Engel J.C., Jacobi D., Lee C.H., Burleigh B.A. 2013: Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell. Host. Microbe. 13: 108-117. Go to original source... Go to PubMed...
  8. Castillo C., MuÑoz L., Carrillo I., Liempi A., Gallardo C., Galanti N., Maya J.D., Kemmerling U. 2017: Ex vivo infection of human placental chorionic villi explants with Trypanosoma cruzi and Toxoplasma gondii induces different Toll-like receptor expression and cytokine/chemokine profiles. Am. J. Reprod. Immunol. 78: e12660. Go to original source... Go to PubMed...
  9. Choy M.Y., St Whitley G., Manyonda I.T. 2000: Efficient, rapid and reliable establishment of human trophoblast cell lines using poly-L-ornithine. Early Pregnancy 4: 124-143. Go to PubMed...
  10. Combs T.P., Nagajyothi, Mukherjee S., de Almeida C.J., Jelicks L.A., Schubert W., Lin Y., Jayabalan D.S., Zhao D., Braunstein V.L., Landskroner-Eiger S., Cordero A., Factor S.M., Weiss L.M., Lisanti M.P., Tanowitz H.B., Scherer P.E. 2005: The adipocyte as an important target cell for Trypanosoma cruzi infection. J. Biol. Chem. 280: 24085-24094. Go to original source... Go to PubMed...
  11. Coura J.R., Vinas P.A. 2010: Chagas disease: a new worldwide challenge. Nature 465: S6-7. Go to original source... Go to PubMed...
  12. Cucunuba Z.M., Florez A.C., Cardenas A., Pavia P., Montilla M., Aldana R., Villamizar K., Rios L.C., Nicholls R.S., Puerta C.J. 2012: Prevalence and risk factors for Chagas disease in pregnant women in Casanare, Colombia. Am. J. Trop. Med. Hyg. 87: 837-842. Go to original source... Go to PubMed...
  13. Dias P.P., Capila R.F., do Couto N.F., Estrada D., Gadelha F.R., Radi R., Piacenza L., Andrade L.O. 2017: Cardiomyocyte oxidants production may signal to T. cruzi intracellular development. PLoS Negl. Trop. Dis. 11: e0005852. Go to original source...
  14. Diaz-Lujan C., Triquell M.F., Castillo C., Hardisson D., Kemmerling U., Fretes R.E. 2016: Role of placental barrier integrity in infection by Trypanosoma cruzi. Acta Trop. 164: 360-368. Go to original source... Go to PubMed...
  15. Duran-Rehbein G.A., Vargas-Zambrano J.C., Cuellar A., Puerta C.J., Gonzalez J.M. 2014: Mammalian cellular culture models of Trypanosoma cruzi infection: a review of the published literature. Parasite 21: 38. Go to original source... Go to PubMed...
  16. Finzi J.K., Chiavegatto C.W., Corat K.F., Lopez J.A., Cabrera O.G., Mielniczki-Pereira A.A., Colli W., Alves M.J., Gadelha F.R. 2004: Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide. Mol. Biochem. Parasitol. 133: 37-43. Go to original source... Go to PubMed...
  17. Gude N.M., Roberts C.T., Kalionis B., King R.G. 2004: Growth and function of the normal human placenta. Thromb. Res. 114: 397-407. Go to original source... Go to PubMed...
  18. Gupta S., Wen J., Garg N.J. 2009: Oxidative stress in Chagas disease. Interdiscip. Perspect. Infect. Dis. 2009: 190354. Go to original source... Go to PubMed...
  19. Kipkeew F., Kirsch M., Klein D., Wuelling M., Winterhager E., Gellhaus A. 2016: CCN1 (CYR61) and CCN3 (NOV) signaling drives human trophoblast cells into senescence and stimulates migration properties. Cell. Adh. Migr. 10: 163-178. Go to original source... Go to PubMed...
  20. Liempi A., Castillo C., Duaso J., Droguett D., Sandoval A., Barahona K., Hernandez A., Galanti N., Maya J.D., Kemmerling U. 2014: Trypanosoma cruzi induces trophoblast differentiation: a potential local antiparasitic mechanism of the human placenta? Placenta 35: 1035-1042. Go to original source... Go to PubMed...
  21. Nagajyothi F., Weiss L.M., Silver D.L., Desruisseaux M.S., Scherer P.E., Herz J., Tanowitz H.B. 2011: Trypanosoma cruzi utilizes the host low density lipoprotein receptor in invasion. PLoS. Negl. Trop. Dis. 5: e953. Go to original source...
  22. Paiva C.N., Bozza M.T. 2014: Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox. Signal 20: 1000-1037. Go to original source... Go to PubMed...
  23. Paiva C.N., Medei E., Bozza M.T. 2018: ROS and Trypanosoma cruzi: Fuel to infection, poison to the heart. PLoS Pathog. 14: e1006928. Go to original source... Go to PubMed...
  24. Roggero E., Perez A.R., Tamae-Kakazu M., Piazzon I., Nepomnaschy I., Besedovsky H.O., Bottasso O.A., del Rey A. 2006: Endogenous glucocorticoids cause thymus atrophy but are protective during acute Trypanosoma cruzi infection. J. Endocrinol. 190: 495-503. Go to original source... Go to PubMed...
  25. Shah-Simpson S., Pereira C.F., Dumoulin P.C., Caradonna K.L., Burleigh B.A. 2016: Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology. Mol. Biochem. Parasitol. 208: 91-95. Go to original source... Go to PubMed...
  26. Wen J.J., Yin Y.W., Garg N.J. 2018: PARP1 depletion improves mitochondrial and heart function in Chagas disease: effects on POLG dependent mtDNA maintenance. PLoS Pathog. 14: e1007065. Go to original source... Go to PubMed...