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Bone markers

Bone tissue is one of the hardest tissues in the body. It has 
3 important functions: mechanical, protective, and meta-

bolic. The mechanical functions of the skeletal muscles are to 
provide body movement based on attachment to the bones. 
Contraction allows body movement. The protective function 
of the bones is the armor provided to internal organs, such as 
those in the cranium and thorax. Finally, there is the process of 
hematopoiesis in the bone marrow. The metabolic function of 
bone provides for the storage of ions, such as calcium, phos-
phorus, sodium, and magnesium, and the maintenance of 
hemostasis of these minerals [1-3]. This paper is a discussion 
of new and novel bone markers and preanalytical factors that 
affect analytical methods.

Bone tissue structure
Bone is a mineralized connective tissue composed of an or-
ganic and inorganic structure. The inorganic structure, or 
mineral structure, of bone is primarily hydroxyapatite Ca10 

(PO4) 6 (OH) 2 crystals, as well as magnesium, carbonate, and 
fluoride. The majority of calcium in the body is in the bones 
(about 99%). Hydroxyapatite crystals provide resistance to 
bone [4, 5]. The collagen fibrils are the element that provides 
strength, while hydroxyapatite crystals contribute hardness. 
The organic matrix forms about half of the dry weight of the 
bone. Collagen is the major protein of the organic matrix; 
non-collagen molecular (glycosaminoglycans and glyco-
proteins, etc.) constitute about 10% of the organic matrix. 
Although 80% to 90% of collagen is type 1 collagen, other 
collagen types (type 3, 5, 11, 13 collagen) also make up the 
matrix structure [2, 6, 7]. Non-collagen proteins, such as pro-
teoglycans (chondroitin sulfate and proteoglycan), glyco-
proteins (alkaline phosphatase and osteonectin), glycopro-
teins containing arginine-glycine-asparagine, (osteopontin 
and bone sialoprotein), osteoprotogerin, and carboxylated 
(Gla) proteins (osteocalcin and matrix Gla protein), are also 
present [8, 9].
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Bone cells and bone turnover
Bone is a metabolically active tissue that is constantly re-
newed by resorption, formation, and remodeling. The annual 
regeneration rate of bone in a healthy adult is approximately 
10%. The cells responsible for bone resorption are osteoclasts, 
and the cells involved in bone structure are osteoblasts [10, 
11]. The functions of these cells are summarized in Table 1. 
Osteocytes develop from osteoblasts and also contribute to 
the construction of bone matrix [12, 13]. Osteocytes express 
receptors for many hormones and cytokines. Due to the se-
cretion of sclerostin and fibroblast growth factor 23 (FGF23), 
it acts as an endocrine cell. These factors are important for 
osteocyte-osteoblast interactions. In the first phase of re-
construction, osteoclasts perform bone resorption. During 
bone resorption, acid and hydrolytic enzymes are secreted 
from osteoclasts. Osteoclastic degradation of the bone ma-
trix leads to a release of bone minerals and fragments of col-
lagen. Although some collagen is incompletely hydrolyzed, 
resulting in the formation of pyridinoline cross-links bound 
to fragments of the alpha-1 and alpha-2 chains of collagen, 
the majority of the collagen is completely hydrolyzed to its 
small units, such as pyridinoline (PYD) and deoxypyridinoline 
(DPY). In the second stage, osteoblasts form the bone matrix, 
followed by a mineralization phase [14-17].

Type 1 collagen is necessary for mineralization [18]. Collagen 
is a protein that forms a triple helix structure. Procollagen is 
the formation of the first helical structure during collagen syn-
thesis. The amino and carboxyl peptides present at both ends 
of the procollagen molecule are removed from the structure 

by proteases during collagen synthesis, resulting in the forma-
tion of tropocollagen. Tropocollagen contains portions at each 
end that do not demonstrate a helix structure: The nonheli-
cal portions at the two terminals of tropocollagen are the N-
telopeptide and C-telopeptide regions. Cross-links are formed 
between lysine and/or hydroxylysine side chains of tropocol-
lagen [2, 19]. This cross-linking is affected by a copper-depen-
dent enzyme, lysyl oxidase. Cross-linking takes place between 
lysine and hydroxylysine in tropocollagen molecules. PYD 
and DPY are cross-links. The PYD cross-linking region in the 
N-telopeptide region is the amino-terminal telopeptide (NTX). 
The carboxy-terminal telopeptide (CTX) is an isomerized frag-
ment in the C-terminal region [2, 6, 7, 18, 19].

Bone resorption and formation are determined by mole-
cules that affect osteoblast or osteoclast activity [10-12]. Os-
teoblasts regulate bone resorption through the expression of 
receptor activator of nuclear factor kappa-B ligand (RANKL), as 
well as bone formation [20]. RANKL is a ligand for the receptor 
activator of the nuclear factor kappa-B (RANK) receptor and is 
responsible for stimulating resorption via the formation and 
activation of osteoclasts. Osteoblasts also form osteoprote-
gerin (OPG), a soluble receptor. OPG impedes bone resorption 
by inhibiting the differentiation and proliferation of osteo-
clasts. This occurs through blocking the interaction of RANKL 
with its receptor, RANK, which is localized on the osteoclasts. 
In summary, OPG and RANKL are synthesized by osteoblasts, 
and are involved in osteoblast-osteoclast interaction [20-22]. 
The net effect of OPG and RANK is the regulation of osteoclast 
activation and thus, bone resorption (Fig. 1).

Table 1. Bone cells and main functions

Cell	 Characteristics	 Function and roles in bone remodeling

Osteoblasts	 Osteoblasts are bone-forming cells derived from	 Osteoblasts are responsible for the construction of new
	 pluripotent precursors. They synthesize many	 bone matrix and mineralization. They control mineralization
	 proteins, growth factors, and cytokines in the bone.	 by regulating the transition of calcium and phosphate
		  ions from the surface membranes. The cell surface contains
		  parathormone, D-vitamin, and estrogen receptors. Alkaline
		  phosphatase enzyme is present in the plasma membrane.
Osteocytes	 Osteocytes are the most abundant cells in the bone.	 Osteocytes keep bone tissue alive. Nutrients and hormones
	 They are a type of osteoblast that reduces metabolic	 pass from cell to cell with their cytoplasmic extensions. They
	 activity and resorbs bone. They form when an osteoblast	 are involved in sensing the mechanical load applied to
	 becomes embedded in the matrix it has secreted.	 bone and biochemical signalling leading to resorption or
		  formation. They are responsible for providing phosphate
		  homeostasis by regenerating the mineralized matrix and
		  regulating the excretion of enough calcium to the
		  circulation and phosphate from the kidneys.
Osteoclasts	 Osteoclasts are multiple nucleus degradation cells	 Calcitonin receptors are present in the osteoclast membrane.
	 derived from pluripotent hematopoietic stem cells.	 There are no parathyroid hormone or D vitamin receptors.
	 They have an apical membrane that acts as a key to	 Osteoclasts include tartrate-resistant acid phosphatase
	 bone resorption.	 and carbonic anhydrase Osteoclasts reduce pH via the
		  membrane-based ATPase enzyme. Hydroxyapatite becomes
		  soluble and demineralization occurs in the bone.
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Several hormones are involved in the regulation of bone me-
tabolism [23-26]. Osteoblasts are stimulated by parathyroid hor-
mone and vitamin D, but are inhibited by corticosteroids. While 

parathyroid hormone and vitamin D also stimulate osteoclasts, 
calcitonin and estrogen inhibit the activities of osteoclasts. 
Table 2 illustrates the hormones that affect bone metabolism.

Table 2. The main hormones that affect bone metabolism

Hormone	 Effects

Parathyroid hormone	 Parathyroid hormone causes resorption of bone tissue.
	 • Provides the release of calcium and phosphorus
	 • Restricts collagen synthesis in osteoblasts
	 • Stimulates bone resorption in mature osteocytes
	 • Causes solubility in osteoclasts
	 • Allows early transformation of cells into osteoclasts and osteoblasts
	 • Reduces calcium binding capacity of bone
Calcitonin	 Calcitonin acts in the opposite way of parathyroid hormone. Calcitonin inhibits bone resorption in
	 pharmacological doses by inhibiting osteoclasts.
Sex hormones	 Estrogen decreases osteoid matrix production and increases bone resorption due to estrogen deficiency
	 during menopause. Testosteron shows estrogen-like effects.
Growth hormones	 Growth hormones are important for skeletal growth. They provide positive calcium-phosphate balance.
Thyroid hormones	 Thyroid hormones stimulate both bone resorption and formation. Thus, hyperthyroidism accelerates 
	 bone turnover.
Steroids	 Steroids directly stimulate bone destruction. It may be due to accelerated apoptosis of osteoblasts 
	 and osteocytes.
Prolactin	 Prolactin accelerates bone loss by suppressing estrogen and testosterone production.

Figure 1. Differentiation of bone cells: Role of RANKL and OPG. ILs, PTH, and vitamin D3 are related to bone cell formation. Bone cells interact 
with each other. RANKL and OPG from the osteoblast regulate osteoclast formation. DKK-1 is a regulator of osteoblast activity via the Wnt 
pathway. It is a negative regulator of Wnt signaling. Wnt signaling is associated with control of cell proliferation as well as osteoblasts. 
Dkk-1: Dickkopf-related protein 1; GM-CFU: Granulocyte-macrophage colony-forming unit; IL: Interleukin; M-CSF: Macrophage colony-stimulating factor;  
OPG: Osteoprotegerin; PTH: Parathyroid hormone; RANKL: Receptor activator of nuclear factor kappa-Β ligand; TNF-a: Tumor necrosis factor alpha.
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The final phase of the process of bone turnover is the resting 
phase. In healthy individuals, bone formation matches bone 
destruction and there is no loss in total bone mass. In cases 

of metabolic bone disease, the balance between bone resorp-
tion and formation is impaired; bone resorption and/or bone 
formation increases or decreases. The remodeling processes 

Table 3. Serum and urinary bone turnover markers and assay methods

Marker	 Activity	 Sample	 Method (s)

Bone-specific alkaline phosphatase	 Formation	 S, P	 E, IRMA, EIA
Osteocalcin	 Formation	 S	 RIA, ELISA, IRMA, ECLIA
Procollagen type 1 C-terminal propeptide	 Formation	 S	 RIA, ELISA  
Procollagen type 1 N-terminal propeptide	 Formation	 S, P	 RIA, ELISA 
Hydroxyproline	 Resorption	 U	 HPLC, C
Hydroxylysine-glycosides	 Resorption	 U (S)	 HPLC, ELISA
Pyridinoline	 Resorption	 U, S	 HPLC, ELISA
Deoxypyridinoline	 Resorption	 U, S	 HPLC, ELISA
Type 1 collagen carboxy-terminal cross-linked telopeptide	 Resorption	 U, S	 ELISA, RIA, ECLIA
Type 1 collagen amino-terminal cross- linked telopeptide	 Resorption	 U, S	 ELISA, RIA, ICMA
Bone sialoprotein	 Resorption	 S	 RIA, ELISA
Osteocalcin fragment	 Resorption	 U	 ELISA
Tartrate-resistant acid phosphatase	 Resorption	 P, S	 RIA, ELISA, C
Cathepsins	 Resorption	 P, S	 ELISA

C: Calorimetry; E: Electrophoresis; ECLIA: Electrochemiluminiscence immunoassay; ELISA: Enzyme-linked immunoassay; HPLC: High-performance liquid chromatography;  
ICMA: Immunochemiluminometric assay; IRMA: Immunoradiometric assay; P: Plasma; RIA: Radioimmune assay; S: Serum; U: Urine.

Formation markers

Bone alkaline phosphatase (BALP)
Osteocalcin (OC)
Procollagen type 1 C-terminal propeptide (P1CP)
Procollagen type 1 N-terminal propeptide (P1NP)

Tartrate-resistant acid phosphatase (TRACP)
Cathepsin K
Receptor activator nuclear factor K-B Ligand (RANK)

Bone sialoprotein
Osteocalcin fragments

Enzymes from
osteoclast

Hydroxyproline (OHP)
Hydroxyl-glycoside
Pyridinoline (PYD)
Deoxypyridinoline (DPY)
Type 1 collagen carboxy terminal cross linked
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Type 1 collagen amino terminal cross
linked telopeptide (NTX)

Collagen proteins

Non collagen proteinsResorption markers

Bone markers

Figure 2. Classification of bone turnover markers.
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of bone has demonstrated adaptation to local and environ-
mental stimuli (physical or hormonal) [27, 28].

Bone turnover markers
The metabolic status of bone can be evaluated using a group 
of molecules called bone turnover markers (BTMs). BTMs con-
sist of estrogens and structural proteins released from the 
collagen matrix [28, 29]. Although BTMs are divided into 2 
groups, formation and resorption markers, some markers al-
low for evaluation of both formation and resorption (Fig. 2). 
Bone resorption markers indicate type 1 collagen degradation 
and osteoclast activation. Type 1 procollagen products and 
molecules expressed from activated osteoblasts are defined 
as markers of bone formation. In bone disorders, bone me-
tabolism is dramatically altered, and either class of marker will 
identify changes in bone turnover. If the clinical situation has 
influenced the development stage of osteoblasts, BTM mis-
matches will occur [30-32].
BTMs are assayed in serum and/or urine using several meth-
ods, such as electrophoresis, radioimmunoassay, high perfor-
mance liquid chromatography, enzyme immunoassay, and 
colorimetric assay (Table 3). Commonly used bone markers are 
summarized below.

Bone formation markers
Bone-specific alkaline phosphatase (BALP): Alkaline phos-
phatase (ALP), a membrane-bound enzyme, has 4 isoforms, 
which are located in the bone, placenta, liver, and intestine. 
The bone and liver isoforms are the most common (>95%) in 
circulation [33]. BALP is produced by osteoblasts and elevated 
BALP levels are positively correlated with bone formation rate. 
BALP also plays a key role in degrading the natural inhibitor of 
mineralization pyrophosphate [30-32, 34].
Osteocalcin (OC): OC, a calcium-binding peptide, consists of 49 
amino acids. OC is expressed and secreted by osteoblasts [8, 10]. 
Most synthesized OC enters the bone matrix, but a small amount 
is released into the blood. Vitamin K and 1.25-dihydroxyvitamin 
D are necessary for OC synthesis [35, 36]. During synthesis, vi-
tamin K dependent carboxylation occurs in specific glutamate 
residues of molecules. This posttranslational modification gives 
the protein the ability to bind to calcium. OC synthesis is in-
duced by vitamin D. There are also carboxylated forms of OC 
in the blood, as well as non-carboxylated forms. OC, which has 
a very short half-life, breaks down rapidly and forms OC frag-
ments. In some cases, it is thought that these fragments may be 
a source of information about bone metabolism. Although it is 
accepted as a bone formation marker, during bone resorption 
OC can be liberated. Therefore, the net effect is still uncertain in 
various clinical situations. In addition, due to difficulties of anal-
ysis, stability problems in the test sample, and a high degree of 
biological variation, OC provides only limited information about 
bone metabolism. [37-39]. In summary, serum OC levels provide 
important information about osteoblastic activity, rather than 
showing the severity of bone disorders.

Procollagen propeptides: Procollagen is the precursor of 
type 1 collagen. The procollagen molecule has amino and car-
boxyl terminal extensions. During synthesis, these extensions 
are enzymatically removed from the procollagen molecule 
and released into the circulatory system. These peptides are 
the procollagen type 1 C-terminal propeptide (P1CP) and the 
procollagen type 1 N-terminal propeptide (P1NP). Although 
these procollagen peptides are specific to type 1 collagen 
rather than bone, the concentration is reduced by estrogen 
and anti-resorptive therapy and increased by parathyroid hor-
mone therapy [40-45]. It has been suggested that PINP in the 
blood may be one of the reference markers of bone turnover 
for fracture risk prediction and monitoring of osteoporosis 
treatment [46, 47]. However, it has also been noted that pre-
analytical variances affected P1NP measurements. Although 
P1NP has minimal circadian variability, sample instability has 
been observed [48, 49].

Bone resorption markers
Collagen cross-links: PYD and DPY are cross-linking collagen 
polypeptide chains that provide stabilization of collagen [6, 
7]. The most important function of the cross-linking pattern is 
that it provides the mechanical properties of type 1 collagen. 
Collagen cross-linking also affects the differentiation of os-
teoblasts [49, 50]. Cross-linkages formed during extracellular 
collagen maturation are released into the blood as a result of 
mature collagen degradation [6, 7]. PYD and DPY are found in 
urine in both free and peptide-bound forms. 
PYD is found in bone as well as in cartilage, whereas DPY is 
specific to the bone and dentin. Therefore, DPY is a more spe-
cific and sensitive bone marker than PYD. Collagen cross-link-
ages can be useful in clinical conditions, especially when bone 
resorption is critical, such as in osteoporosis and osteoarthritis 
[51, 52].
Hydroxyproline (OHP): OHP is derived from the post-trans-
lational hydroxylation of proline [2, 6, 7]. The presence of OHP 
increases the elasticity of collagen. Proline reduces the elastic-
ity of collagen. There are 2 sources of circulating OHP: dietary 
intake and bone resorption. OHP enters the circulation during 
bone destruction and collagen degradation. Gene mutations 
leading to a change in the proline and/or OHP content of col-
lagen lead to diseases in which collagen elasticity is affected 
[53]. Therefore, OHP is a marker of collagen degradation rather 
than a BTM. It has been reported that prolyl-hydroxyproline, as 
a collagen-derived dipeptide, was associated with osteoblast 
differentiation [54, 55].
Telopeptides of type 1 collagens (CTX, NTX): NTX and CTX 
are released during collagen degradation [6, 7]. The Interna-
tional Osteoporosis Foundation and the Internatıonal Feder-
ation of Clinical Chemistry and Laboratory Medicine Working 
Group have suggested that the blood level of CTX and NTX 
may be a bone resorption marker [46-48]. Serum NTX and 
CTX levels have been reported to be elevated in cases of bone 
metastasis and in postmenopausal women [56, 57]. 
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Tartrate-resistant acid phosphatase (TRACP): TRACP is a 
lysosomal enzyme [58, 59]. It has 2 isoforms in the circulation: 
TRACP5a found in activated macrophages and TRACP5b de-
rived from osteoclasts. During bone resorption, TRACP5b is se-
creted by osteoclasts and generates reactive oxygen species. 
Therefore, it is accepted as a marker of both the number of 
osteoclasts and a measure of activity. The fact that renal dys-
function or diet does not affect TRAPC5b levels is important 
for clinical use of this marker [60, 61]. 
Hydroxylysine-glycosides: Hydrogen lysine, which is present 
in the structure of collagen, is formed by post-translational 
modification during collagen synthesis. The lysyl hydroxylase 
enzyme provides for the formation of hydroxylysine. Another 
modification of collagen is the transfer of galactose to these 
hydroxylysine derivatives. This glycosylation reaction results in 
galactosyl hydroxylysine (GHL). During collagen breakdown, 
hydroxylysine and GHL are circulated and excreted in the 
urine. It is an important advantage that hydroxylysine is not 
affected by diet and that the only source of GLH is bone. There-
fore, collagen degradation is more specific than OHP [62, 63].

Other bone matrix proteins
Osteonectin: Osteonectin is one of the noncollagenous cal-
cium-binding glycoproteins in bone. It is also a secreted pro-
tein acidic and rich in cysteine (SPARC) Osteonectin mediates 
the maintenance of bone mass and normal remodeling. It 
has been reported that decreased osteonectin levels were 
related to a low number of osteoblasts and bone formation 
rate. SPARC mutations have been identified in patients with 
idiopathic osteoporosis [64, 65]. However, osteonectin is also 
found in non-bone connective tissue and platelets. Therefore, 
it is not a bone-specific biomarker.
Bone sialoprotein (BSP): BSP is a glycoprotein of the bone 
matrix. It is one of the non-collagen phosphorylated proteins 
in bone. It is only found in mineral tissue and is produced by 
bone cells. BSP is important for cell matrix adhesion and also 
has an activating role for osteoclasts. Elevated values of BSP 
in patients with rheumatoid arthritis and postmenopausal 
women have been reported [66, 67].
Cathepsin K: Cathepsin K is an enzyme from the cysteine pro-
tease family. It is predominantly expressed by active osteo-
clasts. It is a marker of fracture risk and bone mass due to the 
destruction of the matrix proteins of the bone. There are cur-
rently several studies of cathepsin K inhibitors as a potential 
treatment option for osteoporosis. Although bone resorption 
is a potentially related marker, further studies are needed for 
clinical use [68, 69].

New bone markers
Periostin: Periostin is a protein expressed by collagen-rich 
connective tissue, including bone. Its role in collagen synthe-
sis is to increase the activation of lysyl oxidase, which allows 
the collagen to be cross-linked. Periostin has positive effects 
on both bone formation and bone strength. It has been con-

sidered that periostin could become a marker to demonstrate 
the differentiation of the metabolic activity of the periosteum. 
Study results also supported that periostin may related to the 
development of oncogenesis, lung disease, and kidney fibro-
sis [70, 71].
RANKL and OPG system: One of the main regulators of os-
teoclast differentiation and function is the RANKL/RANK/OPG 
system [20, 22]. It has been suggested that circulating levels 
of OPG and RANKL could reflect local bone marrow produc-
tion [72, 73]. The activator of the nuclear factor kappa-B ligand 
is OPG. OPG is a member of the tumor necrosis factor (TNF) 
superfamily and inhibits osteoclasts both in formation and 
activity (Fig. 1). RANKL is a member of the TNF receptor super-
family and is produced by osteoid and preosteoblasts as well 
as endothelial cells. RANKL binds to the RANK receptor and 
increases osteoclast formation and activity. Osteoclast precur-
sors express RANK. There are conflicting data on the relation-
ship between these systems and bone disorders [74-77]. The 
inconsistencies in the results indicate that there is a need for 
further development of the test methods and better under-
standing of preanalytical variability.
Sclerostin: Sclerostin is a 22 kDa glycoprotein produced by 
the SOST gene. It is expressed in osteocytes and is an antag-
onist to Wnt signaling [29, 77-79]. Sclerostin reduces bone 
formation as well as bone resorption. It has been reported 
that monoclonal antibodies against sclerostin decrease bone 
resorption and that sclerostin could be accepted as potential 
biomarker of bone formation [80]. Several studies have sug-
gested a relationship between sclerostin and osteoporosis 
[81, 82]. Elevated sclerostin levels correlated with estradiol 
and parathyroid hormone (PTH) observed in high levels in 
postmenopausal women have been reported as having a pro-
tective function [78, 80]. Sclerostin levels increase with age 
in both sexes [83]. Studies in patients with type 2 diabetes, 
chronic kidney disease (CKD), or rheumatoid arthritis have 
indicated that sclerostin could be a marker of vascular calci-
fication. Recently, it has been shown that sclerostin was stim-
ulated by TNF-a, and demonstrated a correction of the bone 
remodeling uncoupling that occurs due to inflammation [84-
87]. However, sclerostin assay standardization is needed be-
fore sclerostin can be used clinically for the management of 
bone disease.
Dickkopf-1 (Dkk-1): The Wingless signaling pathway plays 
an important role in the differentiation and activity of os-
teoblasts. Dkk 1 is one of the proteins that inhibit this path-
way [29, 88-91]. Serum Dkk-1 levels were found to be elevated 
in multiple myeloma, bone metastases, rheumatoid arthritis, 
CKD, osteodystrophy, and vascular calcification [91-95]. It has 
been reported that Dkk-1 levels were negatively correlated 
with bone mineral density in postmenopausal patients [96]. 
Circulating Dkk-1 does not, however, accurately reflect bone 
turnover.
Sphingosine-1-phosphate (S1P): S1P is a lipid mediator 
and has several G protein-coupled receptors [97]. These are 
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the SP1R, SP1R1, and SP1R2 receptors. S1P affects the prolif-
eration, survival, and migration of osteoblasts, as well as os-
teoclast differentiation by increasing RANKL in osteoblasts. It 
controls the traffic of osteoclast precursors between the blood 
and bone marrow cavities. The S1P concentration is high in the 
circulation, while it is low in bone; therefore, osteoclast precur-
sors migrate from the blood to bone [29, 98, 99]. S1PR1 and 
S1PR2 have opposite effects. A low S1PR1 level in monocyte 
cells results in an accumulation of osteoclast precursors and 
increased bone resorption, while a decreased S1PR2 level is re-
lated to a decrease in osteoclastic bone resorption [100, 101]. 
It has been suggested that elevated serum S1P levels are as-
sociated with elevated bone resorption and increased preva-
lence of vertebral fractures in women after menopause [102].
Fibroblast growth factor 23 (FGF23): FGF23 is synthesized 
by osteocytes as a molecule of 251 amino acids [10, 29]. FGF23 
acts locally within the bone and affects phosphate homeosta-
sis in the kidneys. It has been accepted that FGF23 is a true 
bone-derived hormone. Klotho, as a cofactor, is required for 
FGF23 to bind to receptors, with the consequent reduction of 
phosphate reabsorption in the proximal tubules of the kidney. 
FGF23 regulates 1-alpha-hydroxylase, serum phosphate, and 
(PTH). A group of proteins, small integrin-binding ligand, N-
linked glycoproteins, is thought to be related to the regula-
tion of FGF23 [103-106]. In the circulation, FGF23 is present in 
3 forms: the intact form, and the C- and N-terminal fragments. 
Prospective studies suggest that there may be a relationship 
between elevated serum intact FGF23 and fracture risk in the 
elderly. FGF23 levels can also be predictive of cardiovascular 
events in patients with CKD, obesity, insulin resistance, and 
cardiovascular disease [106-111].

MicroRNAs (MiRNAs): Single-stranded RNA molecules with 
18 to 24 nucleotides, MiRNAs play a regulatory function in 
several pathways, including organogenesis, cell apoptosis, 
proliferation, and differentiation [29, 112]. They may be free or 
bound to proteins. Circulating miRNAs act as signaling mole-
cules that affect epigenetic information between cells. Several 
studies have examined the role of miRNAs in bone turnover 
and bone-associated MiRNAs have been identified [112-115]. 
For example, while miR-34a is target of osteoclastogenesis, 
miR-133a is relatively specific to the regulation of bone for-
mation [116-120]. Unfortunately, the roles of MiRNAs are very 
complicated and further studies are needed.

Conditions and factors that should be considered and 
standardized when evaluating bone turnover markers
The ideal BTM should be bone-specific, demonstrate the risk 
of fracture, provide an assessment of the efficacy of treatment, 
have a standardized method of analysis and low biological vari-
ability. In addition, easy and reliable collection of the sample 
and analysis that is suitable for automation are other important 
features of the ideal bone marker [28-32]. It is expected that 
a BTM will reflect precise changes in bone turnover, and that 
urine or serum marker levels will be high in cases of increased 
bone turnover and low in decreased bone turnover (Table 4).

Each of the markers described above has several advantages 
and disadvantages [29]. The total testing process begins with 
an order for the test by the presiding physician. This is fol-
lowed by preanalytical, analytical, and postanalytical phases. 
Care must be taken at each stage to obtain and interpret the 
results correctly. 

Table 4. Interpretation of bone turnover markers

Clinical status	 Interpretation of bone turnover markers

Hyperthyroidism	 s-CTX ↑
Hyperparathyroidism	 u-NTX ↑
Postmenopausal women,
Paget disease or bone metastasis	 Most marker levels ↑; u- NTX excretion and s-BSAP and s-PINP are very sensitive
	 Serum osteocalcin levels may be in normal range
Antiresorptive therapy 	 Most bone marker levels ↓ during antiresorptive therapy, depending on treatment and bone marker
Osteoporosis	 s-PINP  and  s-CTX ↑
Fracture	 Most bone markers ↑ after a fracture, maximal at 2-12 weeks, but effect lasts for up to 1 year 
Fracture risk	 The association between bone formation markers and fracture risk was not statistically significant 
	 (especially for OC, BALP, PICP and PINP)
Chronic kidney disease   	 s-OC, s-CTX, s-BSP ↑
Liver diseases	 BALP, PICP, PINP, OHP, PYD, DPY, CTX, BSP ↑
Hemolysis	 s-TRACP ↑
Drugs	 Glucocorticoids reduced bone turnover marker levels
	 Anticonvulsants increased bone turnover marker levels
	 Oral contraceptive reduced bone turnover marker levels with >35 years of use

BALP: Bone-specific alkaline phosphatase; BSP: Bone sialoprotein; CTX: Type 1 collagen carboxy terminal cross-linked telopeptide; DPY: Deoxypyridinoline;  
NTX: Type 1 collagen amino terminal cross-linked telopeptide; OC: Osteocalcin; OHP: Hydroxyproline; P1CP: Procollagen type 1 C-terminal propeptide; P1NP: Procollagen type 1 
N-terminal propeptide; PYD: Pyridinoline; S: Serum; TRACP: Tartrate-resistant acid phosphatase; U: Urine.



72 Int J Med Biochem

In the next section, preanalytical factors and factors interfer-
ing with bone markers are discussed (Table 5, 6).
Circadian rhythm: Circadian rhythm and nutrition affect the 
level of many bone markers in the blood and urine [122-124]. 
Knowing and accounting for this is important, and impacts 
the time of day when test samples are to be taken. Many bone 
markers have a diurnal variation. TRAP-5b and BALP values 
seem less affected by the time of day. BTM concentrations 
peak in the early morning and decrease in the afternoon and 
evening. CTX has the highest amplitude (60%) in circadian 
variation. The fact that circadian variability is very low and not 
affected by food intake is important for the clinical usefulness 
of PINP. The concentration of urinary bone markers can vary 
20% to 30%. Generally, although the within-day and between-
day variability of urine markers is similar, the diurnal variability 
of serum levels of bone formation markers is less than that of 
between-day variability. BTMs concentrations in urine should 
be expressed as the ratio of urinary creatinine concentrations. 
Additionally, bone turnover is higher in the winter months [47].
Bone-building markers are thought to be less affected by fast-
ing and circadian rhythm. Serum samples for CTX measure-
ment should be taken in the morning after overnight fasting. 
OHP levels are affected by dietary intake. Also, calcium intake 
leads to a reduction in the concentration of bone resorption 
markers. Therefore, taking samples after morning and night 
fasting at between 8 and 10 AM is important for standardiza-
tion. [123, 124]. 
Menstrual cycle: In premenopausal women, the rate of bone 
turnover is altered during the menstrual cycle; however, the 
change is usually not significant. The rate of bone turnover 
rises in the late follicular phase of the menstrual cycle and falls 
through the midluteal phase. Therefore, it is most appropriate 
to take test samples in the follicular phase of the cycle [22].
Sample stability: Serum, ethylenediaminetetraacetic acid 
(EDTA), or heparin plasma may be used for the collection of 
blood samples. EDTA plasma is advised for the assay of the ma-
jority of BTM, but the evidence remains weak. EDTA plasma is 
not used for calcium or alkaline phosphatase analysis. EDTA 
is preferred for CTX-1 for plasma sample stability. The storage 

conditions are particularly important for serum OC and TRACP. 
Although long-term storage below -20°C is suitable for most 
BTMs, storage conditions below -80°C are not recommended 
for OC and TRACP. Repeated freezing and thawing of samples 
disrupts the analyte quality, and therefore, the analysis of 
BTMs in such samples is not appropriate [22, 125]. 
Exercise: Exercise leads to both acute and chronic changes in 
the level of bone markers. The effect depends on age and the 
type of exercise. Exercise and physical activity may be related 
to reduced bone turnover. It is recommended that samples 
should be taken at least 48 hours after exercise [22, 126, 127].
Age and Sex: Age is an uncontrolled preanalytical factor in bone 
marker tests. Children have a significantly higher bone turnover 
than adults. Therefore, the BTM level is higher in children than in 
adults [128]. As bone formation accelerates in puberty, bone for-
mation markers increase. In women, there are periodic changes 
in bone metabolism both after pregnancy and menopause. 
BTM levels increase during pregnancy, with the highest level 
reached in the sixth month. Increases in the level of BTMs may 
continue after delivery. Both resorption and formation markers 
were elevated in post-menopausal women when hormone re-
placement therapy was not taken. An increase in BMT level also 
occurs within a few months after the last period. Bone turnover 
increases with aging due to dietary calcium deficiency and/or 
vitamin D deficiency in women [22, 129-131].
Serum and urine BTM concentrations are relatively high in 
men, with some aging-associated decrease. It has been sug-
gested that the reference intervals of PINP and CTX for men 
be reduced according to age. BAP has not been seen to signif-
icantly change with age in men. The level of BTMs is greater in 
older women than older men. Until the age of 60 to 70 years, 
the BTM level remains largely stable in men. Thereafter, bone 
resorption markers may increase or remain the same, while 
markers of bone formation may decrease, increase, or remain 
unchanged [60, 129, 131].
Drugs: BTMs are used increasingly to treat patients with 
metabolic bone diseases, such as Paget's disease, osteoporo-
sis, and metastasized bone cancer. Since anti-resorptive drugs 
inhibit bone resorption, these markers gradually decline and 
eventually reach a plateau. Since bone formation continues, 
the markers of bone formation may remain stable for several 
weeks, then progressively decrease and reach a plateau. Stud-
ies indicate that different responses may be seen in BTM levels 
according to the mechanism of action and the type of drug as 
well as the route of administration [39, 132-134].
Kidney diseases: In CKD, bone metabolism is often affected by 
complex and multifactorial mechanisms. [135, 136]. Changes 
in bone metabolism are largely related to PTH secretion. The 
role of PTH is the regulation of calcium metabolism. PTH is not 
an ideal bone marker. In addition, problems of measurement 
have still not been eliminated, and the biological variability 
is also quite high. BALP is the bone biomarker measurement 
recommended by guidelines for renal diseases. BALP is not af-
fected by kidney function. However, there is a need for BALP 

Table 5. Preanalytical factors affecting bone turnover markers

	 Uncontrolled	 Controlled

Less important	 Oral contraceptive use	 Seasonal rhythm
		  Menstruation
		  Diet
Important	 Ethnicity	 Exercises
	 Geography	 Fasting status
	 Immobility
	 Diseases
	 Drugs
	 Pregnancy and lactation
Very important	 Age	 Circadian rhythm
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measurement standardization in terms of reference intervals 
and analysis methods [127, 39, 135]. In some studies, it has 
been suggested that an increase in BALP, PINP and TRAP5b 
levels in CDK patients indicates a fracture risk. It has been re-
ported that BALP and RAP5b can be used to evaluate bone 
loss in dialysis patients. Since these 2 markers are not affected 
by renal clearance and have low biological variability, their 
clinical utility may be high [136]. Furthermore, recent studies 
suggest that FGF23 may also be useful in assessing bone me-
tabolism associated with CKD [108, 137, 138].

Conclusion

BTMs have been measured in serum or urine in a number of 
clinical studies for use in the diagnosis and follow-up of primary 
or secondary diseases of the bone. Most of the research has 
indicated that limited or incompatible results were related to 
problems in the analysis methods of the markers and the effects 
of preanalytical variations. In addition, for many BTMs, age- and 
sex-related reference ranges and clinically specific cutoff values 
were not identified. Bone markers cannot be used in the evalua-

Table 6. Preanalytical factors for bone turnover markers

Marker	 Source	 Interpretation

Bone alkaline phosphatase (BALP)	 Osteoblast membrane-bound 	 It is bone-specific but can cross-react
	 tetramer enzyme 	 with liver isoforms up to 10%. The results 
		  can be adversely affected by liver alkaline 
		  phosphatase level.
		  The effect of circadian rhythm is very low.
Procollagen type 1 	 Precursor molecules of collagen	 Tests have been developed for intact
N-terminal propeptide (P1NP)	 type 1 synthesized by osteoblasts	 or total forms.
		  The effect of circadian rhythm is very low.
		  It is the most sensitive marker of bone formation
		  and is particularly useful in monitoring bone 
		  formation and anti-resorptive therapies.
		  The biological and analytical variability of serum 
		  P1NP has been well documented
Procollagen type 1 C–terminal	 Precursor molecules of collagen	 It is mostly derived from bone collagen
propeptide (P1CP)	 type 1 synthesized by osteoblasts	 type 1 (90%)
		  The effect of circadian rhythm is very low.
Type 1 collagen amino terminal 	 Serum NTX formed by osteoclastic	 The effect of circadian rhythm is high.
cross-linked telopeptide (NTX)	 hydrolysis of type 1 collagen.
Type 1 collagen carboxy terminal 	 Serum CTX is always ß-isomerized.	 Test samples require prior fasting
cross-linked telopeptide (CTX)	 It is formed by osteoclastic hydrolysis	 The level is influenced by kidney and liver functions
	 of collagen. Cathepsin K releases CTX 	 The effect of circadian rhythm is high.
		  The biological and analytical variability of s-CTX 
		  has been well documented
		  EDTA is preferred for plasma samples
Urinary Deoxypyridinoline (DPY)	 Proteolytic hydrolysis of collagen	 Present in mature collagen only
		  It is independent of dietary intake
		  It is influenced by UV radiation and circadian rhythm
Urinary pyridinoline (PYD)	 Bone, cartilage,tendon, blood vessels	 Present in mature collagen only
		  It is independent of dietary intake
		  It is influenced by liver function, active arthritis and 
		  UV radiation
		  The effect of circadian is high
		  Results should be provided as the ratio of creatinine
Serum tartrate-resistant	 Platelets, erythrocytes	 It is influenced by hemolysis
acid phosphatase	 osteoclasts	 The effect of circadian is high
		  Sample stability: 2 years at −80 °C
Serum/urine osteocalcin	 Osteoblasts	 Osteoblast function marker
	 and odontoblasts;	 It is influenced by the kidneys
		  The effect of circadian is high
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tion of bone mass and structure, in the amount of bone formed 
or resorbed, or the diagnosis of bone diseases. Bone markers 
reflect acute changes in bone metabolism and display all meta-
bolic activity in the skeletal system for a certain time interval.
•	 Majority of the turnover markers reflect total skeletal 

turnover and are not always specific to bone metabolism.
•	 BTMs are valuable for monitoring bone metabolism in 

patients with CKD. BALP, P1NP, TRAP5a, and FGF23 are 
biomarkers for follow-up in CKD.

•	 BALP and P1PN are recommended for both diagnosis and 
follow-up of Paget's disease.

•	 BALP, P1NP, and CTX are useful BTMs for the management 
of primary osteoporosis. The International Osteoporosis 
Foundation and the Internatıonal Federation of Clinical 
Chemistry and Laboratory Medicine Working Group sug-
gests that CTX may be a useful marker for bone resorption 
and P1NP for bone formation.

•	 BALP in tumor-induced osteomalacia can be useful as a fol-
low-up and a diagnostic marker, and FGF23 can be helpful 
in cases of hypophosphatemic rickets.

•	 The response of BTMs to anti-adsorptive treatment may be 
quite different depending on the type of drug, the route of 
administration, and the characteristics of the disease.

•	 There are different methods for the same analyte. There-
fore, it is important to carry out serial measurements in the 
same laboratory and using the same method.

•	 The concentration of BTMs in urine should be expressed as 
a ratio of urinary creatinine concentration.

•	 For plasma samples, EDTA or heparin is generally suitable 
as an anticoagulant. Hemolyzed serum samples should not 
be used for enzyme analysis, particularly for TRAP.

•	 Measurement of BTMs (especially for beta CTX-1 and P1NP) 
after fasting is currently recommended. 

In spite of the large number of studies, the role of bone mark-
ers in clinical guidelines remains very limited. The majority of 
markers are specific to collagen formation and destruction. 
Variables such as age, gender, and menopause are important 
because of the dynamic nature of bone as well as lifelong 
modeling and remodeling activities. The fact that most of 
the markers are peptide or protein in structure and are eas-
ily hydrolyzed in plasma affects the sensitivity and specificity 
of the analysis method. It is also important that the method 
is suitable for automation. Unfortunately, at present, auto-
mated analysis is available for only a few bone markers. Bone 
mineral density measurement remains important; however, 
measurement of bone markers can be achieved more quickly. 
Therefore, standardization and harmonization studies of bone 
markers are very important.
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