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 A b s t r a c t. The inversion of canopy reflectance models is 
widely used for the retrieval of vegetation properties from remote 
sensing. This study evaluates the retrieval of soybean biophysi-
cal variables of leaf area index, leaf chlorophyll content, canopy 
chlorophyll content, and equivalent leaf water thickness from 
proximal reflectance data integrated broadbands corresponding 
to moderate resolution imaging spectroradiometer, thematic map-
per, and linear imaging self scanning sensors through inversion of 
the canopy radiative transfer model, PROSAIL. Three different 
inversion approaches namely the look-up table, genetic algorithm, 
and artificial neural network were used and performances were 
evaluated. Application of the genetic algorithm for crop parame- 
ter retrieval is a new attempt among the variety of optimization 
problems in remote sensing which have been successfully demon-
strated in the present study. Its performance was as good as that of 
the look-up table approach and the artificial neural network was a 
poor performer. The general order of estimation accuracy for para- 
meters irrespective of inversion approaches was leaf area index > 
canopy chlorophyll content > leaf chlorophyll content > equivalent 
leaf water thickness. Performance of inversion was comparable 
for broadband reflectances of all three sensors in the optical region 
with insignificant differences in estimation accuracy among them.

K e y w o r d s: genetic algorithm, neural network, PROSAIL, 
leaf area index

INTRODUCTION

Vegetation is a fundamental element of the earth surface 
and has a major influence on the exchange of energy bet- 
ween the atmosphere and the earth surface (Bacour et al., 
2002). Accurate quantitative estimation of vegetation bio-
chemical and biophysical variables is useful for a large 
variety of agricultural, ecological, and meteorological ap- 
plications (Houborg et al., 2007). The direct measurement 

of these characteristics is labour-intensive and costly, and 
is thus only practically possible on experimental plots of 
limited size. Because of its global coverage, repetitiveness, 
and non-destructive and relatively cheap characterization of 
land surfaces, remote sensing has been recognized as a re- 
liable method and a practical means of estimating various 
biophysical and biochemical vegetation variables (Cohen 
et al., 2003). Among the many vegetation characteristics, 
leaf area index (LAI) and leaf chlorophyll content (Cab) are 
of prime importance (Darvishzadeh et al., 2008). Resear- 
chers (Rasmussen, 1997) showed that LAI is one of the key 
parameters widely used in crop monitoring, yield estima-
tions, and ecosystem productivity models from regional 
to global scales. At the same time, monitoring spatial pat-
terns in the biochemical composition of plant foliage, in 
particular chlorophyll and water content, is required for 
understanding growth dynamics in plant communities 
(Hilker et al., 2011) and serve as bio-indicators of vegeta-
tion stress (Zarco-Tejada et al., 2001). 

Remote sensing measurement of plant biophysical para- 
meters can broadly be classified into empirical and analy- 
tical/physical approaches (Hilker et al., 2011). Both ap- 
proaches have their advantages and disadvantages. Simpli- 
city and computational efficiency of the empirical approach 
makes it highly desirable for large-scale remote sensing 
applications. However, the limits of this approach are obvi-
ous, such as the limited amount of spectral information, the 
diversified empirical equations used and their sensitivity 
to non-vegetation factors, and lack of generality (Fang et 
al., 2005). Since canopy reflectance depends on a complex 
interaction of several internal and external factors that may 
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vary significantly in time and space and from one crop type 
to another, spectral reflectance relationships will be site-, 
time-, and crop-specific, making the use of a single relations- 
hip for an entire region unfeasible (Colombo et al., 2003). 

Alternately, the analytical/physically-based models 
have proven to be a promising alternative as they describe 
the transfer and interaction of radiation inside the canopy 
based on physical laws and thus provide an explicit con-
nection between the biophysical variables and the canopy 
reflectance. The earth and plant surface features reflect 
radiation anisotropically. Knowledge that the canopy bio-
physical characteristics are related to surface reflectance 
anisotropy (Bacour et al., 2002) provides strong scientific 
basis for the application of these models (Roman et al., 
2011). The Bidirectional Reflectance Distribution Function 
(BRDF) approach taking care of non-isotropic radiation 
distribution is found to be more reliable in characterizing 
vegetation as well as retrieval of parameters. A number of 
canopy radiative transfer models (RTMs) of different com-
plexities have been reported in literature, which simulate 
the bi-directional reflectance as a function of canopy cha- 
racteristics (Verhoef, 1984). Among all RTMs, the 
PROSAIL model is the most popular one and widely 
applied, which describes both the spectral and directional 
variations of canopy reflectance as a function of leaf bio-
chemistry and canopy architecture (Jacquemoud et al., 
2009). Therefore, the inversion of bi-directional canopy 
reflectance models emerged as a promising alternative for 
retrieval of biophysical parameters (Kimes et al., 1998). 

Model inversion, however, requires significant computa- 
tional resources, which are slow on large data sets. This 
problem results from both the complex description of the 
radiative field within the canopy and the inversion method 
itself. Different inversion techniques have been propozed 
for physical models, including numerical optimization 
methods (Jacquemoud et al., 1995), look-up table (LUT) 
approaches (Tripathi et al., 2012), artificial neural networks 
(Walthall et al., 2004), genetic algorithm (Fang et al., 2003), 
and, very recently, support vector machines regression 
(Durbha et al., 2007). In the iterative optimization approach, 
a stable and optimum inversion is not guaranteed, as the 
search algorithm may get trapped in local minima before 
reaching the global minimum. Moreover, the technique is 
computationally intensive, in particular when using com-
plex radiative transfer models. This makes the retrieval of 
biophysical variables unfeasible for large geographic areas 
(Houborg et al., 2007). The look-up tables and neural net-
work methods are computationally more efficient than the 
traditional optimization approach, can be applied on a per 
pixel basis of satellite images, and they do not require any 
initial guesses. Moreover, they can be applied to the most 
sophisticated models without any simplifications. Although 
look-up table techniques may provide an efficient alterna-
tive, the definition of the cost function to be minimized still 
remains an open question when the uncertainties and their 

structure are not very well known (Verger et al., 2011). 
A limitation shared by all of the physically based models 
is the ill-posed nature of model inversion (Combal et al., 
2002), the fact that different combinations of canopy para- 
meters may correspond to almost similar spectra. Therefore, 
there is a strong need for developing new advanced inver-
sion techniques. While much work exists in the realm of 
retrieving biophysical parameters from spectral indices and 
from other model inversion methods, applications of gene- 
tic algorithms (GA) to a variety of optimization problems 
in remote sensing have only been demonstrated in recent 
years. The fundamental concept of GA is based on the con-
cept of natural selection in the evolutionary process, which 
is accomplished by genetic recombination and mutation 
(Goldberg, 1989). Genetic algorithms have been developed 
for retrieval of land surface roughness and soil moisture 
(Wang and Jin, 2000). The most significant advantages of 
the GA are that it avoids the initial guess selection problem 
and provides a systematic scanning of the whole population 
and several acceptable local solutions such that a global 
optimum solution could be identified. Although the GA has 
been applied to various disciplines, there has been no 
work so far on applying GA for estimating crop biophysi-
cal parameters from either field measured reflectance or 
remotely sensed surface reflectance using the PROSAIL 
model. At the same time, there is still dearth of ample infor-
mation on rigorous comparison of the various inversion 
methods in terms of accuracy and stability, computational 
time and number of variables obtainable (Liang, 2004). 

Our objective was to perform a comparison of PROSAIL 
model inversion by look-up table (LUT), genetic algo-
rithm (GA), and neural network (ANN) approaches and to 
simultaneously derive biophysical parameters such as leaf 
chlorophyll content (Cab), equivalent leaf water thickness 
(Cw) and leaf area index (LAI) of soybean crop from field 
measured hyperspectral BRDF data. 

MATERIALS AND METHODS

A field experiment was conducted in the experimental 
farm of Indian Agricultural Research Institute, New Delhi, 
located at 28°38’23’’ North latitude and 77°09’27’’ East 
longitude with altitude of 228.6 meter above mean sea 
level. The climate is subtropical and semiarid characterized 
by hot dry summer and cold winter. The mean maximum 
temperature in the kharif season (June to September) rang-
es from 28.3 to 39.5°C and the mean minimum temperature 
from 12 to 28°C. Mean annual rainfall (30 years average) is 
769.3 mm, of which 75% is received during the south west 
monsoon season between July to September and very little 
rain is received in rabi season.

Cultivar Pusa 9814 of soybean (Glycine max L.) which 
is of 125-day-duration was raised during the kharif season 
of 2011 in four plots each of size 6 x 6 m2 with sufficient 
margins for irrigation channels and bunds under optimum 
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growing condition. Sowing of soybean was done on 2nd 
July 2011 by seed drill with row spacing of 45 cm. Soybean 
being a leguminous crop the nitrogen requirement was very 
low ie only 20 kg ha-1 and being a kharif season (rainfed) 
crop only one extra irrigation of 3 cm depth was given at 
the vegetative growth stage. All the recommended doses 
of fertilizers were applied as basal. All standard plant pro-
tection measures and cultural practices were followed as 
recommended for the region.

The most popular canopy radiative transfer model 
PROSAIL (Jacquemoud et al., 2009) was used in the pre-
sent study to retrieve plant parameters. It is a combination 
of two models ie the PROSPECT model (Jacquemoud 
and Baret, 1990), which describes leaf optical properties, 
and the SAIL model (Verhoef, 1984), which characterizes 
canopy optical properties. The PROSAIL model considers 
the detailed information on leaf optical properties and also 
accounts for relative geometry of the source and sensor. By 
inverting the PROSAIL model, both the leaf and canopy 
parameters could be estimated.

The PROSAIL model needs measurement of different 
plant parameters like leaf area index (LAI), average leaf 
angle (LAD), leaf chlorophyll content (Cab), specific leaf 
weight (Cm), equivalent leaf water (Cw), leaf length, ca- 
nopy height, and dry biomass to simulate soybean canopy 
reflectances as well as inversion of biophysical parameters. 
These parameters were measured following standard pro-
cedures synchronizing with the spectral observations taken 
at 52 DAS, 66 DAS, 84 DAS, and 100 DAS correspond-
ing to the beginning bloom stage (R1), beginning pod stage 
(R3), beginning seed stage (R5), and full seed stage (R6) of 
soybean crop, respectively.

The bi-directional reflectance measurements at different 
relative azimuth and view zenith angles were taken using 
ASDI FieldSpec-3 hand held spectroradiometer with 10° 

Field of View (FOV) along with a field goniometer at four 
dates corresponding to the above mentioned growth stages 
of soybean crop. In case of soybean, the reflectance was 
measured in the spectral range of 350-2 500 nm at 36 rela-
tive azimuthal angles (relative to the azimuth angle of the 
sun) (0 to 350° at 10° interval) and in six zenith angles (20, 
30, 40, 50, 60°, and nadir). In the principal plane (which 
is aligned to sun azimuth), 0° relative azimuth refers to 
backward scattering direction of light while 180° rela-
tive azimuth refers to forward scattering direction of light. 
A deail study was done to find the hotspot position among 
all possible combination of view zenith and azimuth angles 
as model inversion performed best at hotspot position.

The reflectance measurements at a 1 nm interval from 
spectro-radiometric were integrated to sensor broad-
band reflectances corresponding to optical bands of Terra 
MODIS, LandSat TM, and IRS LISS-3 sensors by using 
their respective band-wise relative spectral response (RSR) 

curves. The broadband reflectances were used to the in- 
version approaches of LUT, GA, and ANN to retrieve cor-
responding soybean biophysical parameters.

In this study, mainly three inversion approaches of 
look-up table (LUT), genetic algorithm (GA), and artificial 
neural network (ANN) were used to retrieve biophysical 
parameters.

The simplest method of solving of a radiative trans-
fer model is by the use of a LUT. The LUT was built in 
advance of the actual inversion through forward running 
of the PROSAIL model from a priori knowledge of the 
variation of the biophysical parameters. For the inversion, 
only search operations are needed to identify the param-
eter combinations that yield the best fit between measured 
and LUT spectra. However, to achieve high accuracy for 
the estimated parameters, the dimension of the LUT must 
be sufficiently large (Combal et al., 2002). The range of 
free variables was defined by a priori knowledge from the 
field observation carried out during the experiment and as 
reported in literature. Out of total 14 variables, only three 
free variables of equivalent leaf water thickness, chloro-
phyll content, and leaf area index were varied to generate 
LUT. For retrieval of soybean biophysical parameters, Cw 
was varied from 0.01-0.05 cm at an interval of 0.001, chlo-
rophyll from 30-100 µg cm-2 at an interval of 1 µg cm-2, 
and LAI from 0.5-6.5 at an interval of 0.2. A total of 74124 
combinations were generated. Parameters which did not 
vary much and were difficult to measure (Car, skyl) were 
fixed at model default values (Houborg et al., 2007). The 
values of the other fixed parameter Cbrown was taken as 
0.15, N (structural parameter) as 1.6, psoil as 0.2, and Cm 
as 0.008 g cm-2 as per measurements. The average leaf 
angle (LAD) was set as measured in the field for each date 
given in Table 1. The view zenith angle was set at hotspot 
position ie 30o in the backscattering direction of the princi-
pal plane (ie relative azimuth of 0°). As during the course of 
the crop season the sun illumination geometry varied, four 
different LUTs were built, each corresponding to four specific 
dates of observation (Koetz et al., 2005). The sun zenith 
angles were 20, 27, 30, and 37° corresponding to 52, 66, 84, 
and 100 DAS during the growing season of soybean crop.

In the LUT approach, mean of 10% solutions was used 
in parameter retrieval and mean squared error (MSE) was 
used as a cost function. The simple mechanism is that the 
calculated MSE between observed spectra and the LUT 
simulated spectra was sorted in ascending order ie lowest to 
highest. Then best (smallest MSE) 10% LUT entries were 
chosen and the mean of the parameter corresponding to this 
set was the final solution. The formula of MSE is given 
below:

,)(MSE
1

2

∑=

−
=

n

i n
RsimRobs

          
(1)

where: Robs – observed reflectance, Rsim – simulated 
reflectance, n – number of observations.
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The genetic algorithm method is an iterative search 
algorithm based on an analogy with the process of natu-
ral selection (Darwinism) and evolutionary genetics. The 
search aims to optimize a user-defined function (the func-
tion to be optimized) called the fitness function, which 
calculates differences between user-supplied measured 
reflectance and model-simulated reflectances using sta-
tistical parameters like MSE. To perform this task, GA 
maintains a ‘population’ of candidate points, called ‘indi-
viduals’, over the entire search space. At each iteration, 
called a ‘generation’, a new population is created using 
‘genetic operators’ such as mutation and crossover, which, 
from an algorithmic point of view, can be considered respec-
tively as a means to change locally the current solutions and 
to combine them. This new generation generally consists 
of individuals that fit better than the previous ones on the 
basis of their fitness score into the external environment as 
represented by the fitness function. As the population iter-
ates through successive generations, the individuals will 
in a general tend toward the optimum of the fitness func-
tion. What makes GA attractive is its ability to accumulate 
information about an initially unknown search space and 
to exploit this knowledge to guide subsequent search into 
useful sub-spaces. The fundamental implicit mechanism 
underlying this search consists of the combination of high-
performance ‘building blocks’ discovered during past trials. 
Three important features distinguish the GA approach:
–– GA works in parallel on a number of search points (poten-
tial solutions) and not on a unique solution, which means 
that the search method is not local in the scope but rather 
global over the search space;

–– GA requires from the environment only a fitness function 
(objective function) measuring the fitness score of each 
individual and no other information nor assumptions 
such as derivatives and differentiability; 

–– both selection and recombination steps are performed 
by using probability rules rather than deterministic ones; 
this aims to maintain the global explorative properties of 
the search. 

Separate programs for different growth stages of soy-
bean crop were written in MATLAB for a fitness function 
for broadband reflectance (MODIS, TM, and LISS3). As 
a fitness function, mean squared error (MSE) and nash-
sutcliff efficiency (NSE) were used. NSE was successfully 
used in the generalized likelihood uncertainty estimation 
(GLUE) optimization method for different hydrological 
experiments (Jin et al., 2010). Mathematical expression of 
nash-sutcliffe efficiency (NSE) is given below:
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where: Oi – observed reflectance at specific wavelength 
band i, Pi – simulated reflectance in the LUT at that wave-
length band i, Ō – mean of observed reflectance, n – number 
of wavelength bands.

To carry out this technique, GA optimization toolbox 
in MATLAB was used for retrieval of soybean biophysical 
parameter. Among various GA parameters, ‘creation func-
tion’ was set as ‘feasible population’, ‘mutation function’ as 
‘adaptive feasible’, ‘crossover function’ as ‘scattered’, and 
‘selection type’ as ‘stochastic uniform’. During trials with 
GA parameters, it was observed that different GA para- 
meters had a different degree of influence on the final result. 

The value of best fitness decreases with the increasing 
number of generations up to 15, after which it was found 
to be almost constant. However, with the increase in the 
population size, the fitness value is reduced insignificantly. 
Trials with a crossover fraction did not show any specific 
trend, so a default value of 0.8 was used. In the GA, the 
major computational time was used in the GA optimization 
process although reducing the number of free parameters 
helps. In the GA, the space of initial conditions has to be 
scanned and a large number of iterations are needed to 
converge toward appropriate solutions. To solve this prob-
lem, the GA optimization process was integrated to the 
PROSAIL model to obtain desired solutions. 

T a b l e  1. Soybean biophysical parameters at different dates of crop growth

Parameters
Soybean

52 DAS 66 DAS 84 DAS 100 DAS

Chlorophyll content (µg cm-2) 52 60 65 60

Leaf  area index (m2 m-2) 1.8 2.8 3.15 2.85

Average leaf angle (o) 64 59 57 55

Leaf length/plant height 0.31 0.26 0.24 0.21

Specific leaf weight (g cm-2) 0.007 0.008 0.009 0.007

Equivalent leaf water thickness (cm) 0.014 0.017 0.019 0.015
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Artificial neural nets (ANN) are able to approximate 
very complex non-linear relationships (Kimes et al., 1998). 
Once trained, ANN is very fast to handle a high volume of 
data taking very little computer storage and time. In this 
study, a feed-forward back propagation neural network with 
three layers (input, hidden, and output layer) was used. The 
topology of ANN was four or five nodes in the input layer 
for LISS-3 and ETM+ band reflectances, twenty nodes in 
the hidden layer and three nodes in the output layer cor-
responding to three biophysical parameters of Cab, Cw, and 
LAI. In the neurons of the hidden layer, a trans-sigmoid 
(TRANSIG) transfer function and in the neurons of the 
output layer, a linear transfer function were used as it is rec-
ognized as capable of fitting any type of function (Verger 
et al., 2011). The Levenberg-Marquardt optimization was 
used for training the network because of its efficient con-
vergence performance (Ngia and Sjoberg, 2000) and the 
adaptation learning function was LEARNGDM (gradient 
descent with momentum weight and bias learning func-
tion). There were enough neurons in the hidden layer 
because these are known to be universal function approxi-
mators (Atkinson and Tantnall, 1997). To perform the in- 
version of the canopy reflectance model using ANN, it was 
first trained by the simulated datasets of the PROSAIL 
model. The schematic flow diagram describing the steps 
involved in the LUT, GA, and ANN inversion approaches 
is shown in Fig. 1.

The look-up table of simulated values generated earlier 
with 74 124 cases was used for ANN training and valida-
tion. In this study, 70% of the total simulated set of entries 
was used for training ie adjusting of weights and the rest 
30% was used for the validation purpose. A maximum of 
1  000 epochs were allowed though ANN generally took 
around 200 epochs for learning. After completion of the 
training process, the sought biophysical parameters were 
calculated with the validation datasets. The validation was 
characterized on the basis of determination of coefficient 
(R2) and MSE (mean square error value) to evaluate the 
performance of training. Neural network toolbox available 
in MATLAB™ software was used to implement the inver-
sion approach.

The biophysical parameters retrieved were LAI, Cab, 
Cw, and CCC ie canopy chlorophyll content, to picturize 
the chlorophyll content of the whole canopy. The CCC was 
calculated as a product of Cab and LAI. These parameters 
retrieved through the LUT (mean of best 10% solution), 
GA, and ANN inversion approaches were compared with 
the measured one to check the performance of the inversion 
methods. Statistics of determination of coefficient (R2), root 
mean square error (RMSE), normalized RMSE (nRMSE), 
and ratio of deviation to prediction (RDP) between the 
measured and model-retrieved values were computed and 
used to evaluate the inversion methods. RDP is a simple 
ratio of standard deviation to RMSE, which shows per-
formance of the model prediction. Model prediction is 
considered to be good when the RDP value is greater than 
1 and poor when it is less than 1.

.)(RMSE
1

2

∑=

−
=

n

i n
PsimPobs           (3)

where: Pobs – observed parameter value, Psim – estimated 
parameter value, n – number of observations, nRMSE – 
RMSE/mean measured value, RDP – standard deviation/
RMSE.

RESULTS

The soybean biophysical parameters measured at four 
dates respectively, which are given in Table 1, were used as 
input to the PROSAIL model for simulating bidirectional 
reflectance at those corresponding dates. The measurements 
of bi-directional measurements were taken at 52, 66, 84, 
and 100 DAS corresponding to the beginning bloom stage 
(R1), beginning pod stage (R3), beginning seed stage 
(R5), and full seed stage (R6) of soybean crop. This set of 
observed parameters could thus be a representative set to 
use for PROSAIL model validation accounting for a range 
of soybean growth conditions.

The performance of three inversion approaches of 
the look-up table, genetic algorithm, and artificial neural 
network were evaluated and compared in terms of their 

Fig. 1. Flow chart showing steps involved in the look-up table (LUT), genetic algorithm (GA), and artificial neural network (ANN) 
approaches.

 ,
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performance to retrieve LAI, total chlorophyll content 
of leaf, and leaf water thickness of soybean crop. All the 
three approaches were tried for soybean crop on MODIS, 
TM, and LISS-3 measured reflectance and the results are 
presented and summarized showing comparison of all the 
three inversion approaches in Figs 2-4 and in Table 2.

In this approach, mean of 10% solutions was used 
in parameter retrieval. Corresponding to each observed 
spectra, the LUT was sorted on MSE in ascending order 
ie lowest to highest. Then best (smallest MSE) 10% LUT 
entries were chosen and the mean of the parameter cor-
responding to this set was the final solution. The results 
showed different levels of accuracy for different biophysi-
cal parameters (Table 2). 

The observed values of LAI varied between 1.8- 3.15 and 
the estimated values varied between 2.1-3.07 for MODIS, 
2.21-3.21 for TM, and 2.01-3.05 for LISS-3. There was 
overestimation at low LAI values and underestimation of 
high values. Retrieval of LAI was comparable for all three 
sensors with a correlation R2= 0.95 and RMSE=0.1615 
for MODIS, R2 =0.94 and RMSE=0.2174 for TM, and 
R2=0.94 and RMSE=0.1448 for LISS3 showing a strong 
relation between the observed and estimated values. The 
observed values of Cab varied between 52-65 µg cm-2 and 
the estimated values varied between: 54-68, 46-69, 48-69 
µg cm-2 for MODIS, TM, and LISS-3, respectively. The 
correlation was comparable for all three sensors. RMSE va- 
ried from 3.9 for LISS3 to 6 for TM (6.5 and 10% of the mea- 
sured mean value, respectively). The observed values of 
CCC varied between 0.96-2.05 g m-2 and the estimated 
values varied between: 1.18-2.05, 1.01-2.21, and 0.98- 
2.08 g m-2 for MODIS, TM, and LISS-3, respectively. 
Among all the retrieved parameters, the highest correlation 
of 0.99 (0.0001) was observed for CCC. The observed va- 
lues of Cw varied between 0.014-0.018 cm and the esti-
mated values varied between: 0.015-0.02 cm for MODIS, 
0.014-0.021 cm for TM, and 0.015-0.022 cm for LISS-
3. The estimation of parameter Cw was poor, as the LUT 
approach could not capture the variations in the observed 
values. In this approach, PROSAIL predicted very well for 
LAI having RDP=3.5, which describes the performance 
of model prediction and very poorly for Cw with RDP of 
0.4.CCC accounting for greater variability than Cab show-
ing better retrieval with a higher correlation and RDP. An 
overestimation was found for almost all values of LAI and 
Cw. In the case of Cab, low values were underestimated and 
high values were overestimated. 

Overall, in the LUT approach, the order of accuracy 
estimation was LAI>CCC>Cab>Cw for all the three sensors. 
The level of retrieval accuracy varied among the sensors 
without showing any significant differences in the accuracy.

In GA, one of the most important steps to have higher 
retrieval accuracy is the GA optimization process. The GA 
optimization process is a time consuming step, but inver-
sion took very little time. The LAI estimation showed the 

highest correlation (R2) of 0.96 (p=0.0009) with an RMSE 
of 0.1448, which was 5% of the mean measured value for 
LISS3. The highest correlation R2 of Cab was 0.86 (p=0.01) 
with an RMSE of 6.1, which was 10% of the mean observed 
value for MODIS. CCC showed the highest correlation (R2) 
of 0.97 (p=0.0006) among all the parameters, as found in 
the LUT approach. GA showed better retrieval values of Cw 
than the other two approaches for all the three sensors witha 
correlation (R2) of 0.42 (p=0.21) for MODIS, 0.52 (p=0.14) 
for TM, and 0.51 (p=0.14) for LISS3. The RDP value for 
model prediction varied from 4.1 for LAI estimation to 
0.45 for Cw estimation, which showed that the GA ap- 
proach could predict LAI, Cab, and CCC well enough with 
a high level of accuracy like LUT. Like LUT, in the GA 
approach, the estimated values for all the parameters were 
closer to a 1:1 line (Figs 2-4). In the case of Cab, low values 
were underestimated and high values were overestimated. 
An overestimation was found almost for all values of LAI 
and Cw. In the GA approach, the order of accuracy in esti-
mation was LAI>CCC>Cab>Cw for all the three sensors. 
The level of retrieval accuracy varied among the sensors 
without showing any significant differences in the accuracy.

The ANN took considerably more time in learning than 
the other two approaches, but its inversion time was quite 
low. The correlation coefficient of LAI was 0.63 (p=0.08) 
with an RMSE of 0.32, which was 12% of the mean 
observed value. The Cab estimation showed a correlation of 
0.47 (p=0.18) with an RMSE of 9, which was 15% of the 
observed mean value. ANN underestimated all the values 
of Cab and Cw and overestimated all the values of LAI. The 
ANN approach performed very poorly for Cw as indicated 
by the insignificant value of the correlation coefficient. 
Unlike LUT and GA, the ANN could not capture variations 
in the observed CCC as indicated by a correlation of 0.59 
(p=0.1) with a high RMSE value, which was 20% of the 
mean observed value. The RDP value showed that ANN 
could predict LAI with considerable error (high RMSE) but 
could not predict Cab and Cw. In this approach, the estimat-
ed values for all the parameters were scattered to 1:1 line 
(Figs 2-4), which showed a poor performance of this tech-
nique to retrieve the biophysical parameters of soybean.

The use of ANN as an inversion technique resulted in 
relatively poorer results than LUT and GA. Overall, in all 
the three approaches, the order of estimation accuracy was 
LAI > CCC >Cab > Cw. Performance of all the three inversion 
methods for all the three sensors using R2, RMSE, nRMSE, 
and RDP is shown in Table 2 and a comparison among the 
three inversion approaches are graphically shown through 
the scatter plot of the observed versus estimated values of 
LAI, Cab, CCC, and Cw in Fig. 2 for MODIS, in Fig. 3 for 
TM, and in Fig. 4 for LISS3. 
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DISCUSSION

Inversion of physics-based radiative transfer models 
is an area of rapid development in remote sensing of earth 
surface to derive various biophysical parameters (Liang, 
2007). Among the canopy radiative transfer models, 
PROSAIL is one of the most popular models that have been 
inverted to derive canopy biophysical variables from hyper-
spectral and multispectral remote sensing observations 
(Darvishzadeh et al., 2008; Vohland et al., 2010; Verger et 
al., 2011). A rigorous comparison of the accuracy of va- 
rious inversion methods for physically based models is 
very rare in the literature. There are several comparisons 
of the accuracy and computational efficiencies of va- 
rious traditional inversion methods (Renders et al., 1992). 

However, comparisons between the look-up table methods, 
genetic algorithm, and neural network methods and par-
ticularly in soybean crop are absent in the literature. 
Consequently, the relative accuracy that can be obtained 
with each method cannot be stated until more comparisons 
are made. Therefore, this study was undertaken to evaluate 
the performance of PROSAIL inversions by LUT, GA, and 
ANN for MODIS, TM, and IRS LISS-3 broadband reflec-
tances for soybean crop.

The general order of estimation accuracy among the 
parameters in all the inversion approaches was LAI > CCC> 
Cab> Cw. The higher accuracy of LAI estimation by all the 
approaches may be due to the fact that structural variables 
(eg LAI, LAD) determine the total canopy reflectance of 
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Fig. 2. Scatter plot of observed versus retrieved values by: LUT (a, d, g, j); GA (b, e, h, k); and ANN (c, f, i, l) inversions for MODIS 
in soybean crop.
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crops much more significantly than biochemical variables. 
The high sensitivity of Red and NIR bands and the moderate 
sensitivity of Green bands to changes in LAI (Jacquemoud 
et al., 2009) may have resulted in better simulation of the 
reflectance spectra by PROSAIL leading to relatively accu-
rate inversion.

The relationships between the measured and estimated 
leaf chlorophyll Cab were poorer than for LAI in all the 
inversion processes as indicated by the lower R2 values and 
higher nRMSE. This result is in line with results of previous 
studies (Darvishzadeh et al., 2008). It is argued that there 

is always poor signal propagation from the leaf to canopy 
scale resulting in poor estimation of leaf biochemical para- 
meters by canopy reflectance (Jacquemoud et al., 1996). 
Moreover, only the VIS band is sensitive to leaf chloro- 
phyll variation and this band reflectance has a very low 
dynamic range due to dominance of absorption. Therefore, 
there is more chance of error in PROSAIL simulation of 
reflectance in the VIS band, leading to poorer estimate of 
leaf chlorophyll. A number of studies showed increased 
robustness and accuracy when estimates of biochemical 
variables were integrated at the canopy level (eg canopy 
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Fig. 3. Scatter plot of observed versus retrieved values by LUT (a, d, g, j), GA (b, e, h, k), and ANN (c, f, i, l) inversions for TM in 
soybean crop.
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chlorophyll, Cab x LAI) rather than at the leaf level (Vohland 
et al., 2010). This means that leaf scale results for chloro-
phyll are generally inferior to those at the canopy level. We 
have found similar results, as the accuracy of CCC was bet-
ter to that of Cab. In the case of the leaf water content, all 
the three inversion approaches failed as indicated by the 
non-significant R2 values though GA performed better in 
Cw retrieval among the three.

GA performed well in retrieval like LUT. The ANN 
approach underperformed as compared to LUT and GA, 
even though the ANN training time was considerably 

large and the process computationally intensive. The ANN 
showed underestimation in all the parameters. These results 
are in conformity with the results reported by Vohland et al. 
(2010). They also found that ANN performance was poor 
as compared to numerical optimization and LUT.

Comparing the results of MODIS, TM, and LISS-3, 
very small differences in the level of retrieval accuracy of 
the biophysical parameters were observed. This may be due 
to the fact that the parameters have negligible sensitivity to 
those extra bands included in MODIS and TM.

LUT GA ANN
a

d

g

j

   b

e

h

k

   c

f

i

l

Fig. 4. Scatter plot of observed versus retrieved values by LUT (a, d, g, j), GA ( b, e, h, k), and ANN (c, f, i, l) inversions for LISS 3 
in soybean crop. 
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CONCLUSIONS

1. This work evaluated three inversion approaches of 
the look-up table (mean of 10% solutions), genetic algo-
rithm, and artificial neural network for concurrent retrieval 
of biophysical parameters of leaf area index, total chloro-
phyll content of leaf, canopy chlorophyll content, and leaf 
water thickness of soybean. 

2. All approaches could capture the variability in the 
measured soybean biophysical parameters though the accu-
racy of estimation varied among the parameters. The order 
of estimation accuracy among the parameters in all the 
three approaches was leaf area index > canopy chlorophyll 
content > leaf chlorophyll content > leaf water thickness.

3. The performance of the genetic algorithm was similar 
to the look-up table approach, and the artificial neural net-
work showed poor performance. None of the approaches 
could estimate variation in leaf water thickness significant-
ly though the correlation and estimation accuracy for leaf 
water thickness was better in the genetic algorithm than in 
the look-up table and artificial neural network. Thus, the 
genetic algorithm optimization method may provide an 
alternative to invert the radiative transfer models in remote 
sensing with better understanding of coupling of the gene- 
tic algorithm to radiative transfer models. 

4. The advantage of the genetic algorithm is twofold. 
First, it scans all the initial conditions and provides se- 
veral possible solutions for the detailed examination of 
the global optimum solution, thus it avoids the inaccura-
cies introduced by traditional minimization algorithms. 
Second, it only runs the forward radiative transfer model 
with constrained parameter space and is straightforward in 
the optimization process. Experiments are needed to test 
this method in more complicated areas.
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