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Biotechnological processes represent a challenge in the control field, due 
to their high nonlinearity. In particular, continuous alcoholic fermentation 
from Zymomonas mobilis (Z.m) presents a significant challenge. This 
bioprocess has high ethanol performance, but it exhibits an oscillatory 
behavior in process variables due to the influence of inhibition dynamics 
(rate of ethanol concentration) over biomass, substrate, and product 
concentrations. In this work a new solution for control of biotechnological 
variables in the fermentation process is proposed, based on numerical 
methods and linear algebra. In addition, an improvement to a previously 
reported state estimator, based on particle filtering techniques, is used in 
the control loop. The feasibility estimator and its performance are 
demonstrated in the proposed control loop.  This methodology makes it 
possible to develop a controller design through the use of dynamic 
analysis with a tested biomass estimator in Z.m and without the use of 
complex calculations. 
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INTRODUCTION 
 
 Growing attention has been devoted to the conversion of lignocellulosic material 
into fuel ethanol, considered the cleanest liquid fuel as an alternative to fossil fuels. 
Significant advances have been made towards ethanol fermentation technology. It is now 
understood that it is important to use biomass energy as a means of providing modern 
energy to the billions who lack it. It would complement solar, wind, and other 
intermittent energy sources in the renewable energy mix of the future. One of the most 
immediate and important applications of this kind of energy systems could be in the 
ethanol fermentation from biomass concentration. Biomass is one of our most important 
renewable energy resources, and its consumption for energy production has increased 
significantly in recent years.  
 There are several topics around the conversion process of biomass in energy: the 
substrate used for it, the fermentation scale, measurement equipment, and of course, the 
biomass itself. For the fuel ethanol industry there is a need for research on more 
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competitive ethanologenic microorganisms. Zymomonas mobilis (Z. m) has attracted 
attention as a promising bacterium regarding improving ethanol production (Daugulis et 
al. 1997). Variations in oil prices have prompted increasing focus on renewable 
carbohydrate-based feedstocks for fuels and chemicals. A review of the works of Rogers 
et al. (2007) addresses opportunities offered by Z. m for higher value products through its 
metabolic engineering and use of specific high activity enzymes.  
 The alcoholic fermentation of the Z. m has a few advantages when is compared to 
other microorganisms; it provides ethanol levels near to the ones achieved theoretically in 
the production from glucose, has a low biomass wastage, there are not any oxygen 
requirements, the fermentation can be produced at a low value of pH, and it shows a high 
specific productivity efficiency (around 98%) in ethanol production and a specific rate 
twice bigger (O’Mullan et al. 1991). This results in higher ethanol yields and higher 
specific productivities (see Kesava and Panda 1996; Kesava et al. 1996), this last feature 
being the main benefit. From the estimation and control perspective the knowledge about 
this microorganism will allow us to analyze, in the future, the possibility of using Z. m in 
culture medium and large scale fermentation.  
 Process control has played a rather limited role in the biochemical industry, as the 
economic incentive for improved process operation is often small in relationship to the 
costs associated with research and development. A reason for this has been the lack of 
online sensors for critical process variables. While this will remain an important issue for 
the foreseeable future, recent advancements in biochemical measurement technology 
make the development of advanced process control systems a realistic goal. These trends 
suggest that biochemical processes will emerge as an important application area for 
control engineers (Daoutidis and Henson 2002).  
 The continuous fermentation of Zymomonas mobilis involves the same estimation 
and control issues as bioprocesses in general. These microorganisms show a highly non-
linear and oscillatory kinetic behavior, and some states of the process are difficult or 
impossible to measure.  For example, it is difficult to measure the biomass concentration 
and intermediate variables, which represent the ethanol production rate and are used to 
determine the inhibition effect.  As an appropriate solution for this lack of information in 
bioprocess, some practitioners have been developing several state estimators based on 
different techniques. The observer or a state estimator choice depends inherently on the 
particular problem specifications. In general, when the prior knowledge about the plant or 
the model is incomplete, different approximation techniques may be used, looking for the 
state estimation from the input/output data information. In the literature, several 
proposals for the state estimation on bioprocess can be found, of which the most 
representative are: the works of Dochain (2002, 2003); Boillereaux and Flaus (2000); 
Leal (2001); Adilson and Rubens (2000); and finally Rallo et al. (2002). 
 Previous studies allow us to review the dynamic behavior of bacteria, to establish 
the features to use it as ethanol producer, taking advantage of the natural properties and 
with the aim to reach the optimum point of productivity. As a result, a state estimator has 
been proposed for the process of continuous alcoholic fermentation of Zymomonas 
mobilis, through non lineal filtering based on the recursive application of the Bayes rule 
and Monte Carlo techniques (Dochain, 2002; Quintero et al. 2008d). There are several 
variations of this method, and it is known with different names in the literature such as: 
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particle filters, recursive Bayesian filters, Monte Carlo recursive filters and simulation 
based filters (see Doucet 1998; Crisan and Doucet 2002; Briers 2006, and references 
therein). 
 An important aspect of this work is that details for the real data results are not 
published yet, but the estimator is used in this paper for closed loop purposes in 
simulation, and real data are used as desired trajectories for fermentation.  
 The use of a benchmark is common for a continuous fermentation process, and 
the most used models have two (2) state variables. State variables such as biomass and 
substrate in conjunction with growth rates equations give to the models high non-
linearities. Also, the complex dynamics of bioreactors have been researched for the 
design of different non-linear stabilizing control techniques. The mentioned techniques 
have been applied to relatively simple continuous fermentation processes used to reach 
this aim, the linear case being used as a reference for non-linear methods. Bioreactors 
control has been studied by other authors, including the schemes based on adaptive 
control (Aguilar et al. 2001), optimum control, and neural networks based control (Onder 
et al. 1998). Nevertheless, the investigations in this field remain in a latent stage, and it 
seems that more effort is needed to find a control scheme well developed to be 
implemented in practical (large scale) bioreactors with high performance.  
 The present work fronts the challenge to handle a continuous fermentation 
process in which a microorganism with high kinetic complexities is involved. This 
approach is suited for a process that presents highly non-linear dynamics and the modeled 
system becomes a challenge for control purposes.  
 From a control perspective, for effective control and operation of a non-linear 
process, low dimensional linear models are highly desirable. It is not always possible to 
represent a non-linear process by a single linear model. Consequently, a multiple model 
approach has attracted increased attention in recent years, applied to a variety of areas 
(Murray-Smith and Johansen 1997). The previously mentioned approximations for the 
control problem solution are all valid, but we are looking for a more simple, 
understandable, feasible, and easy to generalize solution for the bioprocess field. 
Consequently, in this work the use of numerical methods is proposed, not only to 
simulate the fermentation process evolution, but also to find the control actions that allow 
the state variables to go from current state in discrete time “n” to the desired next state. 
As a result, a controller for substrate and product concentration are designed and 
calculated; later a complex controller that involves biomass recycle is derived. It is 
important to note that the complex calculations to get the control signal are not necessary 
with this technique; it makes this solution an easily implementable answer to the control 
challenge (Scaglia 2006a,b; Scaglia  et al. 2007). 
 The paper is organized as follows: In Section 2 the continuous fermentation 
process to obtain ethanol from Zymomonas mobilis and the bioprocess model are 
described. Section 3 presents a brief summary of the estimation tools and the algorithms 
structure used for state estimation. Later, in Section 4 the numerical methods and linear 
algebra methodology for controller design and the proposed controllers are presented. 
Then, in Section 5 the dynamic analysis shows the obtained results compared with 
experimental data trajectories. Finally, the conclusions are summarized. 
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STUDY CASE  
 
Alcoholic Continuous Fermentation of Zymomonas mobilis and Dynamic 
Behavior 
 A promising ethanol producer is the bacteria Zymomonas mobilis (Z.m), which 
reaches ethanol yields close to the stoichiometrical value (0.51 g ethanol/g glucose). 
There is an industrial interest in the use of Z.m due to its capability to produce ethanol 
and sorbitol (Oliveira et al. 2005). The continuous alcoholic fermentation process of Z.m 
presents high ethanol performance, but it has oscillatory behavior of the state variables. 
From the control perspective, it represents a challenge, due to the difficulties to measure 
some of these states, with the aim to be used as feedback signals (Bravo et al. 2000; 
Rogers et al. 2007). 
 
Modeling of Continuous Alcoholic Fermentation from Zymomonas mobilis  
 A basis model of the process was used and modified by several authors (Maher 
and Zeng 1995; Daugulis et al. 1997; McLellan et al. 1999; Echeverry et al. 2004). 
Elements of the model for this bioprocess have been represented by the differential and 
algebraic equations, as in the work of Quintero et al. (2008d). 
 With the aim of showing the complexity of the non-linear dynamics involved in a 
fermentation process, it is necessary to put all equations in form of state variables. In 
Quintero et al. (2008a) and working with the defined flows (Echeverry et al. 2004), the 
biomass term will be expressed as function of the mentioned D, which is the total dilution 
rate. The total dilution rate is Ds + Dr, in which Dr is the dilution rate associated with 
biomass recycle R and substrate dilution rate Ds. Then the following set of differential 
equations are considered, where the states variables are defined as follows (Quintero et 
al. 2008d, eq. 12): x1 is the change in biomass concentration, x2 the change in substrate 
concentration, x3 the change in product concentration, x4 the weighted average of the 
ethanol concentration rate, and x5 an intermediate variable auxiliary for the inhibition 
effect determination. 
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 The parameters (Daugulis et al. 1997; McLellan et al. 1999) used to simulate 
oscillatory behavior of the Z. m are presented in Table 1. These parameters have been 
used in previous studies on simulation. The solution proposed to simulate the real 
behavior of the continuous fermentation was performed through the use of Matlab, with 
the Euler and Runge Kutta numerical methods in self developed functions to be used as 
part of the filtering simulation. The sample time used for simulation was the considered 
most appropriate for real plants.  
 

Table 1. Parameters for Model in Oscillatory Behavior 
 

Parameters Values 
α  8.77 
β  0.0366 
δ  0.824 
λ  21.05 
a 0.3142 
b 1.415 

maxQp  2.613 

maxμ  0.41 

/p sY  0.495 
Pma 217 g/l 
Pob 50 g/l 
Pmb 108.0 g/l 
Ks 0.5 g/l 
Ki 200 g/l 
Si 80.0 g/l 
Pme 127 g/l 
Kmp 0.5 g/l 

 
 In this process it is very important to reach an accurate estimation of the non-
measurable system states, with the purpose to use them for posterior control purposes. On 
the other hand, due to its capacitance and dynamic behavior, the bioreactor is an inherent 
low pass filter to the random noise signals. A general process scheme is presented in Fig. 
1, taking into account that the pH control loop is already stabilized, and the 
microorganisms, substrate, and product are variables for control purposes; also, the model 
used to develop the controller does not have the pH as a variable to dynamic behavior. 
Consistently with the notation used in previous work in BioResources (Quintero et al. 
2008d) for reader understanding, the variables defined are X as biomass concentration, S 
substrate concentration on the input flow, P product concentration, and F quantities are 
the names of the flows 1 to 5. The total dilution rate D is given by Ds + Dr, in which Dr 
is the dilution rate associated with biomass recycle R and substrate dilution rate Ds. 
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Figure 1. Continuous Fermentation Process scheme 

 
Nonlinear filters 
 The critical variables are: biomass concentration and intermediate variables that 
represent the ethanol production rate and to determine the inhibition effect. The main 
reason for this is the absence of online sensors or the non-measurable nature of the 
inhibition variables respectively. In Quintero et al. (2008a) the non-linear filtering in 
simulation approach and generalities for the states estimation were presented. The 
improved  state estimator presented in this part of the paper involves the development of 
a better uncertainty model that not only consists of noise components added to the space 
state model, but also contains a structured uncertainty model not yet reported in literature. 
Readers should note that the purpose of this paper is to report the combination in closed 
loop of both Bayesian estate estimator and numerical method based controllers. Figure 2 
depicts the estimation and control scheme used for this work. 
 

 
Figure 2. Controller and estimator scheme 
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Uncertainty model 
 Disturbance and uncertainty models were added to the basic model from eqs. (1) – 
(5), under considerations of modeling and measurement uncertainties of diverse nature. 
In this way, the model will be posed as a stochastic differential equation (SDE). The 
mathematical treatment of the SDEs has some similarities, but also slight differences, to 
the usual theory of ordinary differential equations (ODE). One needs to be aware of these 
similarities and differences when considering numerical methods to solve them. The 
discrete time models can be obtained for non-linear systems based on numerical solutions 
of stochastic differential equations. To find the exact solution of a stochastic nonlinear 
differential equation will be usually impossible, as in the case of ordinary differential 
equations. Thus, only approximate sampled-data models will be obtained. The solution of 
the SDE`s is not our main interest, but these are the samples taken from a model to 
calculate the approach of the probability density function of the states for estimation 
purposes through Monte Carlo techniques. 
 The discrete model used for the diffusion terms of both filter and process model 
was ( ) 5

1 ,  nx nσ ∈ℜ  from as a multidimensional Gaussian Noise dependent on a uniformly 
distributed intern variable ( )z n , updated each sample time, particle by particle. The 
uncertainty model is a stochastic process defined by the following components: 

 
 In eqs. (7) – (8) the symbol �  means “sampled from” the conditional probability 
density function p. The function ( ) 5

1 ,  nx nσ ∈ℜ  corresponds to the term additional to the 
process model equations and can be written as 
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 Also, 5( )z n ∈ℜ  and 5

nwΔ ∈ℜ is a white noise generated with different mean and 
variance vectors. The values for uniformly variable a and b are chosen by the designer. 
Being the states vector [ ]    Tx X S P Z I= one can approach the discrete model as: 
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with 1n nX X X+Δ = − , 1n nS S S+Δ = − , 1n nP P P+Δ = − , 1n nZ Z Z+Δ = − , and 1n nI I I+Δ = − . 
 
 In the measurements model, the uncertainty term was selected as ( )2 , 1tx tσ =  
combined with different Gaussian noise samples in the diffusion components. A simple 
white Gaussian Noise tvΔ  was used, consistent with the Brownian motion discrete 
approximation, generated with statistics that vary dependent on the test performed. With 
the measured outputs vector considered [ ]Ty S P=  and [ ] Ty S PΔ = Δ Δ  
 
 ( ) ( )2, ,t t t ty g x t t x t vσΔ = Δ + Δ .       (11) 
 
 The use of sampled data models raises the question of the relationship between 
the discrete time description of the samples and the original continuous time model. It is 
tempting to simply sample quickly and then to replace derivatives in the continuous time 
model by divided differences in the sampled data model (Yuz and Goodwin 2004). This 
certainly leads to an approximate model. However, in practice, alternative models are 
necessary that describe the relationship between the discrete time actions taken on the 
system and the samples taken from its signals. Any sampled data model for a non-linear 
system will, in general, be an approximate description of the combination of two 
elements: the continuous time system itself, together with the sample and hold devices. 
An exact discrete time description of such a hybrid non-linear system is, in most cases, 
not known or impossible to compute (Yuz 2005). Thus, one needs to be clear about the 
potential accuracy achieved by any model. In fact, the accuracy of the approximate 
sampled-data plant model has proven to be a key issue in the context of control design; a 
controller designed to stabilize an approximate model may fail to stabilize the exact 
discrete-time model, no matter how small the sampling period is chosen.  
 This discrete approach can be justifiable due to the SDE´s possible solution 
through the Euler Mayurama method, compatible with the solution proposed to control 
the system; the sample time chosen was enough not only to simulate the bioreactor 
dynamic behaviour, but also to calculate the control actions needed to carry the system 
from the current state to the desired one. Also, the calculations for biomass and inhibition 
variables can be done between that sample time (Quintero et al. 2008a). For estimation 
scheme, see Quintero et al. (2008e). The input signals to the filter (input substrate 
concentration, dilution rate, and microorganisms recycle term) and the output signals y(t) 
(outflow Substrate and product ) corresponding to the model used as real plant, feed the 
filter block that makes the state estimation.  
 As previously clarified, the structure of the estimator used is the one developed by 
(Quintero et al. 2007, 2008a, 2008d). This was illustrated in Fig. 2. It was improved 
mainly in some operative factors and uncertainty models based in real data and not only 
tested in simulation, but also compared and fed with real data from fermentation reported 
by Raposso et al. (2005). The dynamic behaviors and the delays on the inhibition 
variables can be easily observed; this way it can be seen that they make this process 
highly non-linear.  Details for the real data results are not already published, but the 
estimator is used in this paper for closed loop purposes in simulation, and real data are 
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used as desired trajectories for fermentation. The sampling time values selected were 0.05 
and 0.1 hours. The sampling strategy was used for estimation purposes. In next section 
we will observe that the success of the use of the probability distributions for estimation 
was an advantage for control calculations. 
 
 
CONTROL STRATEGY BASED ON NUMERICAL METHODS 
 
 Most control designs are based on the use of a design model. In sections labeled 
as Modeling and Non Linear Filters we presented the deterministic and stochastic models 
built looking for the solution of both modeling and estimation problems over Z. m 
fermentation process respectively.  
 An ordinary differential equations set that describes the Z. m behavior was fixed 
in the previous section, but we are concerned that the relationship between models and 
the reality they represent is subtle and complex. A mathematical model provides a map 
from inputs to responses, and the quality of a model depends on how closely its responses 
match those of the true plant. Since no single fixed model can respond exactly like the 
true plant, we need, at the very least, a set of maps. However, the modeling problem is 
much deeper; in other words, the universe of mathematical models from which a model 
set is chosen is distinct from the universe of physical systems. Therefore, a model that 
includes the true physical plant can never be constructed. It is necessary for the engineer 
to take a leap of faith regarding the applicability of a particular design based on a 
mathematical model. To be practical, a design technique must help make this leap small 
by accounting for the inevitable inadequacy of models. A good model should be simple 
enough to facilitate design, yet complex enough to give the engineer confidence that 
designs based on the model will work in the true plant (Zhou et al. 1995). 
 This work describes a stochastic model through the addition of uncertainty terms 
needed to consider the filtering as solution to the lack of information and biomass 
estimation. Now, the interest is to look for a proposal that solves the control issue and 
also could be used in complementary fashion with the estimation tool developed. To 
reach this aim, the model under consideration of Certainty Equivalence Principle is used 
to suppose the states estimated by particle filter can be used as certain information for 
control purposes. Certainty Equivalence Principle states that the optimal control law for a 
stochastic control problem has the same structure as the optimal control law for the 
associated deterministic (certainty equivalent) problem. The only difference is that in the 
stochastic control law the (unknown) true state variables are replaced by their estimated 
values. The validity of this principle leads to a conclusion that the designs of the 
estimator and the controller can be optimized separately. The controllers are design based 
on the deterministic model presented and the stochastic model mentioned in this 
paragraph. 
 Compared to linear control theory, it should be noted that separation property is 
weaker than the certainty equivalence used here (Bar Shalom and Tse 1976). Certainty 
equivalence implies separation, but not vice versa.  The existence of the separation 
property was raised first by Kalman and Koepcke (1958), who asked the question: “Does 
separate optimization of statistical prediction and control-system performance yield a 
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system, which is optimal in the overall sense?” This question received a positive answer a 
few years later for discrete time linear systems with unbounded controls, quadratic cost, 
and white Gaussian noise and disturbance (LQG) by Gunckel and Franklin (1963). It was 
also established that in discrete time linear systems with bounded controls and with 
strictly classical information pattern (available history of all previous measurements and 
controls), the conditional probability distribution of the estimated state is independent of 
the optimal control formulation A proof for the separation property in continuous time 
systems was given by Wonham (1968 a,b), who extended the validity also for problems 
with non-quadratic cost. The validity of the Certainty Equivalence Principle was proven 
first for LQG systems with unbounded controls, quadratic cost, and white Gaussian noise 
and disturbance, assuming classical information pattern. The proof was later extended to 
some other linear cases with different statistics. 
 
Control Strategy Basics  
 The use of numerical methods in the simulation of the system is based mainly on 
the possibility of determining the states of the system at instant 1n +  from the state, the 
control action, and other variables at instant n . Let us consider the following differential 
equation,  
 
 ( ) ( ) 0, , ;    0y f y u t y y= =&         (12) 
 
where y represents the output of the system to be controlled, u the control action, and t 
the time. The values of ( )y t at discrete time t nTo= , where 0T is the sampling period, and 

{ }0,1,2,3,n∈ L will be denoted as ny .  Thus, when wishing to compute 1ny +  by knowing ny , 
equation (11) should be integrated over the time interval ( 1)nTo t n To≤ ≤ +  as follows, 
 

 ( )
( ) 0

0

1

1 , ,
n T

n n
nT

y y f y u t dt
+

+ = + ∫        (13) 

 
There are several numerical integration methods to calculate 1ny + . For instance, the Euler, 
and trapezoidal methods could be used (Eqs. (14) and (15) respectively). 
 
 ( )1 0 , ,n n n n ny y T f y u t+ ≅ +         (14) 

 ( ) ( ){ }0
1 1 1 1, , , ,

2n n n n n n n n
T

y y f y u t f y u t+ + + +≅ + +      (15) 

 
where 1ny +  on the right-side member of Eq.(15) is not known and, therefore, can be 
estimated by Eq. (14). So, 1ny + can be substituted by the desired trajectory and then the 
control action to make the output system evolve from the current value ( ny ) to the desired 
one can be calculated. This work proposes applying this approximation to the dynamic 
model of a continuous fermentation and thus obtaining the control action that enables 
system variables to follow a pre-established trajectory during its experimental time 
(Scaglia 2006a; Scaglia et al. 2007, 2008). 
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Controller 1 
Let us consider the following set of difference equations obtained by 

discretization of eqs. (1) - (5), where X, S, P, Z, and I represent the states of the bioreactor 
defined previously, and also, S and P represent the assumed measurements of the system 
to be controlled, Ds and Sin are the control action, and t, the time. The values of the 
variables at discrete time t nTo= , where To  is the sampling period, and { }0,1, 2,3,n∈ L will 
be denoted as nS  and nP . Same notation will be used for nX , nZ  and nI . Thus, wishing to 
compute 1nS +  and 1nP + by knowing nS  and nP , equation (1) - (5) should be integrated over 
the time interval ( 1)nTo t n To≤ ≤ +  as cited on theoretical framework; for instance, the 
Euler approach will be used to calculate 1 1, 1 1 1, , ,n n n n nX S P Z I+ + + + + . Also, through a set of 
algebraic considerations with the flows defined in Echeverry et al. (2004), from eqs. (1-5) 
it follows that: 
 
 [ ]( )1 / 4 1n n

n n n n
X X

X RD Ds R X
To

μ+ −
= + + −  

 ( )1

/

1n n
n n n n n n

p s

S S
Qp X Ds Sin Ds S

To Y
+

⎛ ⎞−
= − + −⎜ ⎟⎜ ⎟
⎝ ⎠

     (16) 

 
1n n

n n n n
P P

Qp X Ds P
To
+ −

= −
 

 ( )1n n
n n

Z Z
I Z

To
β+ −

= −
 

 
( )1n n

n n n n n
I I

Qp X Ds P I
To

β+ −
= − −

 
 
 This consideration will be used with the aim to design a controller and to consider 
a complete dynamic analysis. The quantities 1 1, 1 1 1, , ,n n n n nX S P Z I+ + + + + on the left side member 
are not known and, therefore, can be estimated by the set of Eqs. (16).  
 The use of numerical methods in the simulation of the system is based mainly on 
the possibility of determining the state of the system at instant 1n +  from the state, the 
control action, and other variables at instant n . So, 1 1, 1 1 1, , ,n n n n nX S P Z I+ + + + + can be substituted 
by the desired trajectory and then the control action to make the output system evolve 
from the current value to the desired one can be calculated. This work proposes applying 
this approximation to the dynamic model of a continuous fermentation and, thus, 
obtaining the control action that enables system variables to follow a pre-established 
trajectory during its experimental time. The term D is the total dilution rate, which means 
Ds + Dr, where Dr is the dilution rate associated with the biomass recycle R. It is 
important to remark that into this controller proposal, R and Dr will remain constant, but 
it will be considered to analyze the dynamic effect over control actions Sin and Ds. 
Working on biomass differences equation from (16) one obtains: 

 
[ ]( )/ 4 11

32 2/ 4 / 4 / 41 4

X X ToX ToX RD ToX Ds Rn n n n n n n

X X ToX Ds ToX R ToX R ToX Dr ToX R ToX Rn n n n n n n n n n

μ

μ

= + + + −+
⎡ ⎤ ⎡ ⎤= + + + − + −+ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (17) 
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And this way we can obtain an expression for the control action nDs , 
 

2 2
1

3/ 4 / 4 / 4
4n n n n n n n n n nDs ToX R ToX R ToX X X ToX Dr ToX R ToX Rμ+

⎡ ⎤ ⎡ ⎤+ − = − − − −⎢ ⎥ ⎣ ⎦⎣ ⎦
  (18) 

 
Rewriting the set of equations (16) - (18), and working to put the system on matricial 
presentation, 

( )

( )

2 / 4 / 4

131 2 / 4 0
/41

1
01
01

X ToX Dr ToX R ToX Rn n n n n

Xn S Qp X Ton n nToX R ToX R ToXn n n Yp sSn DsnP ToS To P ToQp Xn n n n nDs Sinn nZ ToP Z To I Zn n n n n
To PI nn

μ

β
β

⎡ ⎤+ + −⎢ ⎥⎣ ⎦
⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤+ ⎜ ⎟−+ −⎢ ⎥ ⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠+⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥−= + ++ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦− ⎡ ⎤+ −+⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎢ ⎥ ⎢ ⎥−⎣ ⎦+⎣ ⎦ ( )I To Qp X In n n nβ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤+ −⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (19) 

And developing the previous expression to reach the desired form and rewriting the 
system to the form Ax b= , in which x is the control actions vector, 
 

( )

( )

21 / 4 / 41

32 1/ 4 0
14

/

10
10 0

0

X X To Dr ToX R ToX Rn n n n n

ToX R ToX R ToXn n n S S Qp X Ton n n nYp s
ToS To Dsn n P P ToQp Xn n n nToP Ds Sinn n n

Z Znx
To Pn

A

μ

β

⎡ ⎤− + − −+ ⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ⎛ ⎞+ −⎢ ⎥ ⎜ ⎟⎢ ⎥ − ++⎣ ⎦ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥− ⎡ ⎤
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⎢ ⎥

−⎢ ⎥⎣ ⎦

14243

1444444442444444443

( )
( )1

To I Zn n n
I I To Qp X In n n n n

b

β

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤− −⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤− − −+ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦1444444444442444444444443

  (20) 

 
Re-ordering the rows 4-5 

( )

( )

( )

21 / 4 / 41

32 1/ 4 0
14

/

10
10 0

0 1

X X To Dr ToX R ToX Rn n n n n

ToX R ToX R ToXn n n S S Qp X Ton n n nYp s
ToS To Dsn n P P ToQp Xn n n nToP Ds Sinn n n

I I To Qp X In n n n n
Z Z TTo P n nn

μ

β

β

⎡ ⎤− + − −+ ⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ⎛ ⎞+ −⎢ ⎥ ⎜ ⎟⎢ ⎥ − ++⎣ ⎦ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥− ⎡ ⎤

= − −⎢ ⎥ +⎢ ⎥− ⎣ ⎦⎢ ⎥ ⎡ ⎤− − −+ ⎣ ⎦⎢ ⎥
⎢ ⎥ − −− +⎢ ⎥⎣ ⎦ ( )o I Zn nβ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤−⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

  (21) 

 
Working on the matrix, the following expression will be obtained: 
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( )

( )

( )

21 / 4 / 4132 / 4 0
4 1

1
/

0
10

1

X X To Dr ToX R ToX Rn n n n n
ToX R ToX R ToXn n n

Dsn S S Qp X Ton n n nToS Ton Yp sDs Sinn nToPn P P ToQp Xn n n nTo Pn I I To Qp X In n n n n

μ

β
β

⎡ ⎤⎡ ⎤− + − −+⎢ ⎥⎢ ⎥⎡ ⎤⎡ ⎤ ⎣ ⎦+ − ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎛ ⎞⎢⎢ ⎥ ⎡ ⎤ ⎜ ⎟− +⎢ +⎢ ⎥− = ⎜ ⎟⎢ ⎥ ⎢ ⎝ ⎠⎢ ⎥ ⎣ ⎦− ⎢⎢ ⎥ − −+⎢⎢ ⎥−⎣ ⎦ ⎢ ⎡ ⎤− − −+⎢ ⎣ ⎦⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

  (22) 

 
 
From Eq. (22) it can be seen that: 
 
 The columns of matrix A are linearly independent. There is a greater number of 
equations than unknown variables. The rank of the matrix A is 2, which is the same as the 
number of columns of A. To accomplish the objective to find the appropriate control 
actions, it is necessary to solve a system of linear equations for each sampling period. Eq. 
(21) can be expressed as a system with the form,  
 

 
x

A b
xy
⎡ ⎤

=⎢ ⎥
⎣ ⎦          (23) 

 
The expressions for the control variables will be available through the solution of the 
equation 
 

 
1 1

;
/

x f f
A b x f

xy g y g g f
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  .      (24) 

 
 In eq. (24) A+ is the Moore-Penrose pseudo inverse of matrix A. In this way, an 
easy approach to the control of Substrate and Product concentration, through the control 
variables Ds and Sin is presented. To accomplish this, it is necessary to solve a system of 
linear equations for each sampling period. 
 The optimal solution, by least squares, is (Strang 1982)  
 

( )

( )

21 / 4 / 4132 / 4 0
4 1

1
/

0
10

1

X X To Dr ToX R ToX Rn n n n n
ToX R ToX R ToXn n n

Dsn S S Qp X Ton n n nToS Ton Yp sDs Sinn n ToPn P P ToQp Xx n n n nTo Pn I I Ton nA

μ

β
β

⎡ ⎤− + − −+ + ⎢ ⎥⎡ ⎤⎡ ⎤ ⎣ ⎦+ −⎢ ⎥⎢ ⎥⎣ ⎦ ⎛ ⎞⎢ ⎥⎡ ⎤ ⎜ ⎟− ++⎢ ⎥−= ⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦ −⎢ ⎥ − −+⎢ ⎥−⎣ ⎦
− −+

14243

1444444442444444443 ( )Qp X In n n
b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤−⎢ ⎥⎣ ⎦⎣ ⎦1444444444442444444444443

. (25) 

 
 The control actions Ds and Sin, can be reached through the solution expressed by 
Eq. (25) each sample time; and then, to the right tuning of the control actions, a dynamic 
analysis must be done (Quintero et al. 2008b). It will be necessary to prove the 
controllers performance in the case of the worst disturbances, and analyze the control 
actions effect over the fermentation process performance (Quintero et al. 2008c). It is 
important to remark that the recycle variable will be taken into account in fixed values 
such as zero or a convenient value for dynamic analysis purposes. Section 5 of results 
will address these tests. 
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Controller Improvement 
 The controller improvement will be done with respect to the use of recycle term 
R, with the aim to handle the microorganism’s concentration. The first equations are the 
same as considered previously into the controller design, then, the recycle variable starts 
to be taken into account as the control vector to pose the problem. This way, as cited in 
the theoretical framework, the Euler approach will be used to calculate all state 
variables 1 1, 1 1 1, , ,n n n n nX S P Z I+ + + + + . Rewriting the previous set of equations (16),  
 

 ( )
2

11 4 4
ToX R D ToX R Dn n n n n nX X To ToX R Ds ToX Dsn n n n n n n nμ= + + + − −+  

 ( )1
1

/
S S To Qp X D Sin D Sn n n n n n n nYp s

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − + −+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

     (26) 

 ( )1P P To Qp X D Pn n n n n n= + −+  
 ( )1Z Z To I Zn n n nβ⎡ ⎤= + −+ ⎣ ⎦  
 ( )1I I To Qp X D P In n n n n n nβ⎡ ⎤= + − −+ ⎣ ⎦  
 
 Working to express the values of the states in time n+1 and put the system on 
matricial presentation, 
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   (27) 

and developing the previous expression to reach the desired form, 
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 (28) 

 
Rewriting the system to the matricial form Ax b= , in which x is the control actions vector, 
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  (29) 

 
Re-ordering the rows 4-5, 
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Through elimination of the 5th row that is linearly dependent and working on the system, 
the following expression can be obtained: 
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 From Eq. (30) it can be seen that: The Control actions R, Ds and Sin are coupled in 
the proposed solution. The columns of matrix A are linearly independent. There is a 
greater number of equations than unknown variables. The optimal solution by least 
squares, can be seen Strang (1982) is  
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 This way, an easy approach to the control of Substrate and Product concentrations 
through the control variables R, Ds and Sin was presented. The control actions R, Ds, and 
Sin for each sample time can be reached through the solution expressed by Eq (32), and 
then a dynamic analysis must be done for the proper adjustment and right tuning of the 
control actions. The effects over the fermentation process performance can be analyzed in 
the same way. Figure 5 depicts the results obtained. 
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RESULTS AND DYNAMIC ANALYSIS 
 
 This section will show the performance results of the controllers designed in 
previous section. The test scenario will be the fermentation process of Zymomonas 
mobilis during 150 hours time.  
 The controller performance will be tested using the set of parameters calculated to 
reproduce the natural oscillatory behavior of the bacteria. It is important to remark that 
with the aim of reproducing the experimental behavior of Z.m, the parameters set 
calculated by Daugulis et al. (1997) and Raposso et al. (2005) were used. This set of 
parameters allows us to consider the fermentation process in real conditions to make it 
reach the desired productivity that has been shown (Daugulis et al. 1997; McLellan et al. 
1999; Raposso et al. 2005; Rogers et al. 2007), which is very important from the 
feasibility perspective for possible online implementation. The simulation results are 
presented as follows: the controllers for substrate and product have a good performance 
based on the criteria of smoothness in control loops, and the variables follow the desired 
trajectory. The control actions used to reach these conditions are between the physical 
limitations, defined by the flows and the speed of real actuators; control actions are 
limited by 0.03< Ds<0.2 and 10<Sin<250 (Quintero et al. 2008c). 
 The set point was selected according to the real behaviour of bacteria and by 
following the purpose of maximizing its productivity. Another important remark is that 
the initial conditions used to simulate the Z.m oscillatory open loop behaviour correspond 
to real data. To test the controller performance against disturbances, a scenario composed 
by a set of extreme additive disturbances in input flows was generated. It is cited in the 
literature that a frequent source of disturbance in this kind of systems is an augmenting or 
decreasing of input flow (or in batch systems, parameters with variations decreasing from 
batch to batch). The controller performance in simulation with both estimator and 
controller with a fixed recycling of 10% can be seen in Fig 3. 
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Figure. 3. Simulation controller and estimator performance. The solid line (Prod. – Subst. Model) 
represent the simulation results, the dotted line (Prod. - Subst. Desired) is the desired trajectory 
and the Prod. - Subst. Exp. data represent the real data in which the desired trajectory is based. 
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  In order to be close to the real behavior of a controller implemented online, an 
experimental trajectory was selected (Raposso et al. 2005) and as in the study case, these 
experimental data were interpolated to obtain a continuous reference trajectory for 
substrate and product. The reference real data used for trajectory was the experimental 
results reported in (Raposso et al. 2005). For further information the reader should review 
that work. 
  Following the purpose of maximizing the productivity of culture, the trajectory 
defined by real culture behavior was smoothed.  Another important remark is that the 
initial conditions used to simulate the Z. m oscillatory open loop behavior correspond to a 
real culture. The controller follows the pre-defined trajectory very well, and it corrects 
the inherent oscillations of the real fermentation; this it means that, under controlled 
conditions, the culture media will be more reliable to reach the maximum Z. m 
productivity of ethanol. Also, the estimations made by a particle filter depend on the 
range of acceptable information that is used for reach a good controller performance. As 
criteria to the controller performance evaluation, the value of 5% around the desired 
trajectory was selected. Furthermore, the simulation was developed under disturbances 
chosen as highly dangerous for stability of culture, such as increasing or decreasing of 
one of the control variables.  This was performed with the aim of simulating the scenario 
of a shutdown of actuators system or mistakes in pre-feeding process. Figures 4 and 5 
depict the estimator performance in simulation with the controller following a smoothed 
trajectory generated with the use of real data. Figure 4 depicts the deviation of desired 
trajectory against disturbances and different controller constants. Note that in Fig. 5 the 
solid lines are within the plotted diamonds and circles, which means that the simulator 
performance in simulation was satisfactory. 
  Our purpose is to design an appropriate controller for the response system, such 
that the error system is asymptotically stable. These choices ensure that the error states 
converge to zero as time t → ∞, and therefore the synchronization between estimator and 
controller is achieved. The proof for controller stability is analogous to that of Scaglia et 
al. (2009), and its presentation in a bioprocess will be found in a publication under 
preparation, which is focused on controllers. 
 Previous work studied the performance of both state estimator (Quintero et al. 2008a) 
and controller (Quintero et al. 2008b) separately; those results and their improvement 
allowed us to develop a first approach to the closed loop of the estimator and simple 
controller in simulation (Quintero et al. 2008c). Consequently, we have presented the 
conjunction of simple and complex controllers with the improved particle filter 
estimators. This paper is the result of the estimation technique applied in both simulation 
and real data, with the control technique previously applied with success not only to 
bioreactors, but also to trajectory tracking of mobile robots (Scaglia 2006; Scaglia et al. 
2006, 2007). Both elements are in conjunction a remarkable scientific and technological 
goal. The importance of those results is that they provide a new perspective and an 
improvement for the optimization of the ethanol production facilities and process. 
Currently, biofuels such as ethanol are in the scope of many researchers; with the aim to 
develop cleaner, safe, reliable, and highly productive ways to obtain it, while looking for 
the optimality and the saving of costs and energy. 
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Figure. 4 Controller and estimator performance by the use of real data trajectory. In solid lines 
(Prod. – Subst. Model) is presented the simulation results, the dotted line (Prod. – Subst. 
Desired) is the desired trajectory, and the dotted diamond line (Prod. – Subst.) Exp. data 
represents the real data in which the desired trajectory is based. 
 
  

 
Figure 5. Improved controller and estimator performance by the use of real data trajectory. The 
solid lines (Prod. – Subst. Model) represent the simulation results, the dotted line (Prod. – Subst. 
Desired) is the desired trajectory, and the diamond-circle line (Prod-Sust) Exp data represents the 
real data upon which the desired trajectory is based. 
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CONCLUSIONS 
 

1. In this work a controller based on numerical methods was built, and the 
performance of a recursive Bayesian state estimator was evaluated in closed loop. 
The application was illustrated in a continuous alcoholic fermentation process 
from Zymomonas mobilis bacteria. It was observed that the use of particle 
filtering as estimator of biomass and inhibition variables was acceptable, feasible, 
and of viable implementation. The use of the estimation tool makes it possible to 
solve the problem of the lack of online biomass estimation, and other important 
variables into a continuous process, due to its reliability and admissible 
computational cost to the real problem sample times. Its performance was 
satisfactory in the control loop. 

 
2. The above control structures can be designed and implemented without great 

difficulty, because standard algebraic-numerical techniques are used. Simulation 
and experimental results of the developed controller designed for a Z.m 
continuous fermentation have been also addressed. Through the analysis of these 
experiments, it can be concluded that the trajectory error between the desired and 
the real trajectory of the fermentation is within the criteria of 5% around the 
desired value. It can be concluded that the proposed methodology is quite simple 
for selecting the parameters of the controller in order to achieve a good 
performance of the system. This methodology for the controller design can be 
applied to other types of systems.  

 
3. The required precision of the proposed numerical method for the system 

approximation is smaller than the one needed to simulate the behavior of the 
system. Thus, the approach is used to find the best way to go from one state to the 
next one, according to the availability of the system model.  

 
4. Real data trajectories showed that the controller is feasible and can be easily 

implemented with control actions bounded to the needed specifications of the real 
process. The term of recycle (R) added in this controller represents the likelihood 
of using biomass recycle as a control variable for continuous fermentation, and it 
improves the dynamic behavior. 
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APPENDIX A 
 
Filtering general algorithm detail, Sequential Importance Sampling SIS (Arulampalam et 
al. 2002): 
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Sequential importance sampling with resampling step SIR (Doucet et al. 2000): 
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The resampling methods used were the residual, deterministic, and multinomial. 
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