Development of a promising system for diagnosing the frogs of railroad switches using the transverse profile measurement method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.125699

Keywords:

frog, railroad switch, longitudinal profile, motion trajectory, rolling stock of railroads

Abstract

We have developed a system for diagnosing the frogs of railroad switches, based on the application of modern microcontrollers of the type ESP with high technical characteristics and the simultaneous use of the information technology IoT (Internet of Things). The proposed system has advantages over mechanical systems in terms of the accuracy of data, their operational processing and submission to user in order to analyze technical condition of frogs at railroad switches. The results of measuring the transverse profile of frogs at railroad switches make it possible to take scientifically-substantiated decisions regarding the need for recovery repair of frogs by the method of surfacing and for control over gradual decrease in their carrying capacity, for establishing their actual technical condition and residual resource.

We carried out experimental-theoretical research into longitudinal profile of frogs at railroad switches laid on the reinforced concrete bars. It was established as a result that after passing 50–65 million tons of cargo (that corresponds to the medium degree of wear) the trajectory takes the shape of a bump. We observe sharp hollows on the reinforced concrete base in the zone where a wheel rolls from a rail wing onto the core, characterized by significant total inclination. Subsequently, when the passed cargo increases, the number of sinusoidal irregularities grows. At wear close to maximal (80–95 million tons passed), the percentage of unfavorable trajectories (sinusoidal and hollows) grows; at low wear, they make up 49.8 %, at a wear of 5–6 mm and larger – 88.3 %. Sometimes there is a transformation of the sinusoidal irregularities into the wave-shaped ones.

We have established characteristic motion trajectories of the center of mass of the wheel over the frog depending on the wear of rail wings and the core of a frog and the passed cargo. A mathematical model was constructed for predicting the wear of frog profile depending on the total weight of passed cargo.

Author Biographies

Vitalii Kovalchuk, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD

Department of rolling stock and track

Mykola Sysyn, Dresden University of Technology Hettnerstraße, 3/353, Dresden, Germany, D-01069

PhD, Associate Professor

Department of Planning and design of railway infrastructure

Yuriy Hnativ, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD, Аssociate Professor

Department of Transport technologies

Olena Bal, Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan I. Blazhkevych str., 12a, Lviv, Ukraine, 79052

PhD, Associate Professor

Department of rolling stock and track

Bogdan Parneta, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Construction industry

Andriy Pentsak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Construction industry

References

  1. Rybkin, V. V., Panchenko, P. V., Tokariev, S. O. (2012). Istorychnyi analiz teoretychnykh ta eksperymentalnykh doslidzhen dynamiky koliyi, strilochnykh perevodiv ta rukhomoho skladu. Zbirnyk naukovykh prats Donetskoho in-tu zalizn. tr-tu, 32, 277–288.
  2. Kovalchuk, V. V., Kalenyk, K. L., Orlovskyi, A. M. (2011). Doslidzhennia pozdovzhnoho profiliu zhorstkykh khrestovyn na zalizobetonnykh brusakh. Visnyk Dnipropetr. nats. un-tu zal. transp. im. ak. V. Lazariana, 41, 130–135.
  3. Gerber, U., Sysyn, M. P., Kowaltschuk, W. W., Nabotschenko, O. S. (2017). Geometrische Optimierung von Weichenherzstücken. EIK Eisenbahningieur kompendium. Euralpres, Deutschland, Hamburg, 229–240.
  4. Kovalchuk, V., Bolzhelarskyi, Y., Parneta, B., Pentsak, A., Petrenko, O., Mudryy, I. (2017). Evaluation of the stressed-strained state of crossings of the 1/11 type turnouts by the finite element method. Eastern-European Journal of Enterprise Technologies, 4 (7 (88)), 10–16. doi: 10.15587/1729-4061.2017.107024
  5. Krysanov, L. G., Teytel', A. M. (1982). O vliyanii zhestkosti osnovaniya na vibrouskoreniya krestovinnyh uzlov strelochnyh perevodov. Vestnik VNIIZHT, 4, 1–6.
  6. Salajka, V., Smolka, M., Kala, J., Plášek, O. (2017). Dynamical response of railway switches and crossings. MATEC Web of Conferences, 107, 00018. doi: 10.1051/matecconf/201710700018
  7. Boyko, V. D. (2003). Issledovaniya vertikal'nyh nerovnostey na krestovinah strelochnyh perevodov s zhelezobetonnymi brus'yami. Vestnik Belorusskogo gosudarstvennogo universiteta transporta. Ser.: Nauka i transport, 1 (6), 18–20.
  8. Danilenko, E. I., Boiko, V. D. (2004). Vertykalni nerivnosti na khrestovynakh v zoni perekochuvannia za riznykh umov ekspluatatsiyi. Problemy ta perspektyvy rozvytku transportnykh system: tekhnika, tekhnolohiya, ekonomika i upravlinnia: Tezy dopovidei druhoi nauk.-prak. konf. Ch. 1. Ser.: Tekhnika, tekhnolohiya. Kyiv: KUETT, 91–92.
  9. Danilenko, E. I., Boiko, V. D. (2006). Systema diahnostyky vzaiemodiyi rukhomoho skladu ta strilochnykh perevodiv z vykorystanniam vymiriuvan hranychnykh nerivnostei. Zb. nauk. prats KUETT, 10, 52–60.
  10. Danilenko, E. I., Boiko, V. D., Verbytskyi, V. H. (2005). Hrafoanalitychnyi metod vyznachennia dynamichnykh syl vzaiemodiyi v zoni nerivnostei na khrestovynakh z zalizobetonnymy brusamy na osnovi analizu yikh parametriv. Problemy ta perspektyvy rozvytku transportnykh system: tekhnika, tekhnolohiya, ekonomika i upravlinnia: Tezy dopovidei tretoi nauk.-prak. konf. Ser.: Tekhnika, tekhnolohiya. Kyiv: KUETT, 56–57.
  11. Yakovlev, V. F. (1964). Vliyanie raschetnyh harakteristik ehlementov puti i podvizhnogo sostava na uroven' dinamicheskih sil v kontakte kolesa i rel'sa. Trudy LIIZhT, 233.
  12. Armstrong, D. A. (1985). Zhelezobetonnye shpaly na zheleznyh dorogah Severnoy Ameriki. Zheleznye dorogi mira, 11, 23–25.
  13. Lehnhardt, U. (1984). Weichenschwelle aus Spannbeton. Signal und Schiene, 6, 202.
  14. Glyuzberg, B. E. (1977). Issledovanie vozdeystviya koles podvizhnogo sostava na krestoviny strelochnyh perevodov. Vestnik VNIIZhT, 2, 37–39.
  15. Rybkin, V. V., Tryakin, A. P., Makovskiy, V. A., Rabinovich, A. V. (1978). Uravneniya prostranstvennyh kolebaniy pri dvizhenii ehkipazha po puti s determinirovannymi nerovnostyami. Issledovaniya vzaimodeystviya puti i podvizhnogo sostava, 97–110.
  16. Orlovskiy, A. N., Klimenko, V. N. (1965). Obosnovanie vybora raschetnoy skhemy dlya issledovaniya vzaimodeystviya kolesa i puti v zone nerovnostey. Trudy DIIT, 57, 42–49.
  17. Kovalchuk, V. V., Sysyn, M. P., Ulf Herber, Nabochenko, O. S. (2016). Pat. No. 116412. Prystriyi dlia vymiriuvannia profiliu (poverkhni) khrestovyn strilochnykh perevodiv. MPK G01V 5/30 (2006.01), E01B 35/04 (2006.01). No. u201610264; declareted: 10.10.2016, published: 25.05.2017, Bul. No. 10.
  18. Kovalchuk, V. V., Sysyn, M. P., Vozniak, O. M., Samets, V. M. (2017). Pat. No. 118124. Prystriyi dlia zhyvlennia systemy diahnostyky tekhnichnoho stanu khrestovyn strilochnykh perevodiv. MPK V61K 9/00, N02K 35/00. No. u201700768; declareted: 27.01.2017, published: 25.07.2017, Bul. No. 14.
  19. Danilenko, E. I., Taranenko, S. D., Kutah, A. P.; Danilenko, E. I. (Ed.) (2001). Strelochnye perevody zheleznyh dorog Ukrainy (Tekhnologiya proizvodstva, ehkspluataciya v puti, raschety i proektirovanie). Kyiv, 296.
  20. Danilenko, E. I., Karpov, M. I., Boiko, V. D. (2003). Polozhennia pro normatyvni stroky sluzhby strilochnykh perevodiv u riznykh ekspluatatsiynykh umovakh: TsP – 0101. Kyiv: Transport Ukrainy, 30.
  21. Danilenko, E. I., Karpov, M. I., Boiko, V. D., Molchanov, V. M. (2007). Harantiyni stroky sluzhby ta umovy zabezpechennia harantiynoi ekspluatatsiyi metalevykh elementiv strilochnykh perevodiv: TsP – 0162. Kyiv: Transport Ukrainy, 56.
  22. Danilenko, E. I., Boiko, V. D. (2003). Osoblyvosti formuvannia nerivnostei v zoni perekochuvannia na khrestovynakh, yaki ukladeni na derevianykh i zalizobetonnykh brusakh. Problemy ta perspektyvy rozvytku transportnykh system: tekhnika, tekhnolohiya, ekonomika i upravlinnia: Tezy dopovidei pershoi nauk.-prak. konf. Ch. 1. Ser.: Tekhnika, tekhnolohiia. Kyiv: KUETT, 47–48.

Downloads

Published

2018-03-13

How to Cite

Kovalchuk, V., Sysyn, M., Hnativ, Y., Bal, O., Parneta, B., & Pentsak, A. (2018). Development of a promising system for diagnosing the frogs of railroad switches using the transverse profile measurement method. Eastern-European Journal of Enterprise Technologies, 2(1 (92), 33–42. https://doi.org/10.15587/1729-4061.2018.125699

Issue

Section

Engineering technological systems