Acessibilidade / Reportar erro

Physiological responses of Porphyra haitanesis to different copper and zinc concentrations

Abstracts

In the present study, several physiological responses of the red marine alga Porphyra haitanesis to elevated concentrations of copper (up to 50 μM) and zinc (up to 100 μM) were investigated. Our results showed that the effects of Cu2+ and Zn2+ on growth, photosynthetic pigments (chlorophylls and carotenoids), phycobiliprotein and metabolism (the fluorescence emission spectra and the activities of photosystemII) did not follow the same pattern. The relative growth rate was inhibited by different concentrations of Cu2+, and was slightly increased at lower concentrations (up to 10 μM) and inhibited at higher Zn2+concentrations. On the other hand, the phycoerythrin contents were slightly increased at relatively low concentrations (up to 1 μM Cu2+ or 20 μM Zn2+) and inhibited by high Cu2+ and Zn2+ concentrations. Moreover, photosynthesis and respiration showed an increase in the amount of oxygen exchange in response to relatively low Cu2+ (up to 1 μM) and Zn2+ concentrations (up to 10 μM), and a reduction to relatively high Cu2+ and Zn2+ concentrations. Oxygen evolution was more sensitive than oxygen uptake to Cu2+ and Zn2+. In addition, the photoreductive activities and fluorescence emission of photosystem II (PS II) were enhanced by lower concentrations of Cu2+ (up to 0.1 μM) and Zn2+ (up to 10 μM) and inhibited by higher concentrations. Furthermore, the intensity of chlorophyll a fluorescence and the active PSII reaction centers followed a similar pattern in response to elevated concentrations of Cu2+ and Zn2+. These results suggest that lower concentrations of Cu2+ and Zn2+ affected the metabolism of P. haitanesis, which was inhibited by higher concentrations of these metals.

Porphyra haitanesis; Copper; Zinc; Photosystem II


No presente estudo foram investigadas as respostas fisiológicas da alga vermelha Porphyra haitanesis às elevadas concentrações de cobre (acima de 50 μM) e de zinco (acima de 100 μM). Os resultados mostram que os efeitos de Cu2+ e Zn2+ sobre o crescimento, pigmentos fotossintéticos (clorofilas e carotenóides), ficobiliproteína e metabolismo (o espectro de emissão de fluorescência e as atividades do fotossistema) não seguem o mesmo padrão. A taxa de crescimento relativo foi inibida por diferentes concentrações de Cu2+ e, em presença de Zn2+, aumentou ligeiramente em baixas concentrações (abaixo de 10 μM) e foi inibida em altas concentrações. Por outro lado, os teores de ficoeritrina apresentaram leve aumento em concentrações relativamente baixas de Cu2+ e Zn2+ (até 1 μM Cu2+ e até 20 μM Zn2+, respectivamente) e foram inibidas por altas concentrações. Além disso, tanto a fotossíntese quanto a respiração mostraram aumento nas trocas de oxigênio em resposta às concentrações relativamente baixas de Cu2+ (até 1 μM) e de Zn2+ (até 10 μM), além da redução em concentrações relativamente altas desses metais. Adicionalmente, as atividades fotoredutoras e as emissões de fluorescência do fotossistema II (PSII) foram incrementadas em baixas concentrações de Cu2+ (até 0,1 μM) e de Zn2+ (até 10 μM) e inibidas por altas concentrações. Desta forma, a intensidade da fluorescência da clorofila-a e dos centros de reação ativa PSII seguiram um padrão semelhante em resposta às elevadas concentrações de Cu2+ e Zn2+. Esses resultados sugerem que baixas concentrações de Cu2+ e Zn2+ afetam o metabolismo de P. haitanesis, que se torna inibido por altas concentrações desses metais.

Porphyra haitanesis; Cobre; Zinco; Fotossistema II


  • ANDRADE, L. R.; FARINA, M.; FILHO, A. M. G. Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol. Environ. Safe, v. 58 p.117- 125, 2004.
  • CALLOW, M. E.; CALLOW, J. Marine biofouling: a sticking problem. Biologist, v. 49, n. 1, p. 1-5, 2002.
  • CHANG, C.; SIBLEY, T. H. Accumulation and transfer of copper by Oocystis pusilla Bull environ. Contamin. Toxicol, v. 50, p. 689- 695, 1993.
  • CHAOUI, A.; MAZHOUDI, S.; GHORBAL, M. H.; ELFERJANI, E. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Pl. Sci, v. 127, p. 139- 147, 1997.
  • CLIJSTER, H.; CUYPERS, A., VANGRONSVELD, J.; Physiological response to heavy metals in higher plants defence against oxidative stress. Z. Naturf., v. 54, p. 730-734. 1999.
  • FERNANDES, J.C.; HENRIQUES, F. S. Biochemical, physiological and structural effect of excess copper in plants. Bot. Rev, v. 57, p. 246- 273, 1991.
  • GAO, K. S.; YAN, J. I.; TANAKA, J. Quantitative evaluation of wind effect during emersion on Porhpyra haitanensis (Rhodophyta), a farmed species in southern China. Fisheries Sci, v. 70, p. 710- 712, 2004a.
  • GAO, Z. Q.; WANG, G. C.; Tseng, C. K. Isolation and characterization of photosystemII of Porphyra yezoensis Udea. Acta Biochim. Biophys. Sinica, v. 36, p. 780- 785, 2004b.
  • GUMGUM, B.; UNLU, E.; TEZ, Z.; GULSUN, Z. Heavy metal pollution in water, sediment and fish from the Tiger River in Turkey. Chemosphere, v. 29, n. 1, p. 111- 116, 1994.
  • HOU, W. H.; SONG, G. L.; WANG, Q. H.; CHANG, C. C. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Pl. Physiol. Biochem, v. 45, p. 2-69, 2007.
  • INTHORN, D. Removal of heavy metal by using microalgae. In: KOJIMA, H.; LEE, Y. K. (Ed.). Photosynthetic microorganisms in environmental Biotechnology Springer- Verlag Hong Kong., 2001. p. 111- 169.
  • JIANG, W.; LIU, D.; LIU, X. Effects of copper on root growth, cell division, and nucleolus of Zea mays Biologia Pl., v. 44, p. 105- 109, 2001.
  • KAIN, J.M. Seasonal growth and photoinhibition in Plocamium cartilagineum (Rhodophyta) of the Isle of Man. Phycologia, v. 26, p. 88- 99, 1987.
  • KÜPPER, H.; KÜPPER, F.; SPELLER, M. Environmental relevance of heavy metal- substituted chlorophylls using the example of water plants. J. expl Bot, v 47, p. 259-266, 1996.
  • KÜPPER,H.; KÜPPER, F.; SPILLER, M. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth. Res, v. 58, p. 123-133. 1998.
  • KÜPPER, H.; ŠETLÍK, I.; SPILLER, M.; KÜPPER, F. C.; PRÁŠIL, O. Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J. Phycol, v. 38, p. 429- 441, 2002.
  • KURSAR, T.; ALBERTE, R. S. Photosynthetic unit organization in a red alga. Pl. Physiol, v. 72, p. 409- 414, 1983.
  • KURSAR, T. A.; MEER, J. ALBERTE, R. S. Light-harvesting system of the red alga Gracilaria tikvahiae I. Biochemical analyses of pigment mutations. Pl. Physiol, v. 73, n. 2, p.353- 360, 1983.
  • MALLICK, N.; RAI, L. C. Physiological responses of non-vascular plants to heavy metals. In: PRASAD, M. N. V.; STRZALKA, K. (Ed.). Physiology and Biochemistry of metal toxicity and tolerance in plants. The Netherlands: Kluwer, 2001. p. 111-147.
  • PERALES-VELA, H. V.; GONZÁLEZ -MORENO, S.; MONTES-HORCASITAS, C.; CAGIZARES- VILLANUEVA, R. O. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere, v. 67, p. 2274- 2281, 2007.
  • REDDY G. N.; PRASAD, M. N. V. Heavy metal binding proteins/ peptides: Occurrence, structure, synthesis and functions: A review. Environ. expl Bot, v. 30, p. 251-264, 1990.
  • RENGER, R. H.; SCHREIBER, M. Practical applications of fluorimetric methods to algae and higher plant research. In: GOVINDJEE, A. M.; FORK, D. C. (Ed.). Light emission by plants and bacteria New York: Academic Press, 1986. p. 587- 619.
  • SINGH, V. P. Toxic metal cadmium: phytotoxicity and tolerance in plants. In: TRIVEDY, R. K. (Ed.). Advances in environmental science technology New Delhi: Ashish Publication House, 1995. p. 225-256.
  • SOLISIO, C.; LODI, A.; SOLETTO, D.; CONVERTI, A. Cadmium biosorption on Spirulina platensis biomass. Bioresource Technol., v. 99, p. 5933-5937, 2008.
  • VALLEE, B. L.; AULD, D. S. Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry, v. 29, p. 5647- 5659, 1990.

Publication Dates

  • Publication in this collection
    31 Jan 2011
  • Date of issue
    Dec 2010

History

  • Accepted
    13 July 2010
  • Reviewed
    05 May 2010
  • Received
    20 Mar 2010
Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, 191 , 05508-120 Cidade Universitária, São Paulo - SP - Brasil, Tel.: (55 11) 3091-6501, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: io@usp.br