J. For. Sci., 2015, 61(2):45-54 | DOI: 10.17221/100/2014-JFS

Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech RepublicOriginal Paper

M. Vejpustková1, D. Zahradník2, T. Čihák1, V. ©rámek1
1 Forestry and Game Management Research Institute, Jíloviątě, Czech Republic
2 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

We developed optimal models for predicting the aboveground biomass of European beech (Fagus sylvatica L.) applicable to the national forest inventory data of the Czech Republic. The models were based on a data set of 81 beech trees collected in 19 stands that represent a wide range of stand and site conditions. The relationship between biomass and tree dimensions (diameter D, height H) was modelled using non-linear regression equations with one (D) or two (D, H) independent variables and two or three parameters (D2, DH2, DH3 models). Subsequently additional predictor variables, i.e. tree age, site index and altitude, were added to the basic models. The inclusion of tree age (T) and altitude (A) in the basic DH2 model resulted in the best model for aboveground biomass (DH2AT model). The altitude (A) and site index (S) were important predictors for stem biomass estimate (DH3AS model). Similarly, branch biomass was predicted in the best way by four-variable model DH2AS.

Keywords: beech, biomass function, temperate forests, tree allometry, wood density

Published: February 28, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vejpustková M, Zahradník D, Čihák T, ©rámek V. Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech Republic. J. For. Sci.. 2015;61(2):45-54. doi: 10.17221/100/2014-JFS.
Download citation

References

  1. Aksellson C., Westling O., Sverdrup H., Holmquist J., Thelin G., Uggla E., Malm G. (2007): Impact of harvest Intensity on long-term base cation budgets in Swedish forest soils. Water, Air and Soil Pollution, Focus 7: 201-210. Go to original source...
  2. Arlot S., Celisse A. (2010): A survey of cross-validation procedures for model selection. Statistic Surveys, 4: 40-79. Go to original source...
  3. Albaugh T.J., Bergh J., Lundmark T., Nilsson U., Stape J., Allen H.L., Linder S. (2009): Do biological expansion factors adequately estimate stand-scale aboveground component biomass for Norway spruce? Forest Ecology and Management, 258: 2628-2637. Go to original source...
  4. Augusto L., Ranger J., Ponette Q., Rapp M. (2000): Relationship between forest tree species stand production and stand nutrient amount. Annals of Forest Science, 57: 313-324. Go to original source...
  5. Bollandsås O.M., Rekstad I., Naesset E., Røsberg I. (2009): Models for predicting above-ground biomass of Betula pubescens spp. czerepanóvii in mountain areas of southern Norway. Scandinavian Journal of Forest Research, 24: 318-332. Go to original source...
  6. Cienciala E., Černý M., Apltauer J., Exnerová Z. (2005): Biomass functions applicable to European beech. Journal of Forest Science, 4: 147-154. Go to original source...
  7. Cienciala E., Černý M., Tatarinov F.A., Apltauer J., Exnerová Z. (2006): Biomass functions applicable to Scots pine. Trees- Structure and Function, 20: 483-495. Go to original source...
  8. Cienciala E., Apltauer J., Exnerová Z., Tatarinov F.A. (2008): Biomass functions applicable to oak trees grown in CentralEuropean forestry. Journal of Forest Science, 54: 109-120. Go to original source...
  9. Droste B. (1970): Struktur, Biomasse und Zuwachs eines älteren Fichtenbestandes. Forstwissenschaftliches Centralblatt, 89: 162-171. Go to original source...
  10. Freppaz D., Minciardia R., Robbab M., Rovattia M., Sacilea R., Taramassoa A. (2004): Optimizing forest biomass exploitation for energy supply at a regional level. Biomass and Bioenergy, 26: 15-25. Go to original source...
  11. Gschwantner T., Schadauer K. (2006): Branch biomass functions for broadleaved tree species in Austria. Austrian Journal of Forest Science, 123/1-2:17-33.
  12. Hochbichler E., Bellos P., Lick E. (2006): Biomass functions for estimating needle and branch biomass of spruce (Picea abies) and Scots pine (Pinus sylvestris) and branch biomass of beech (Fagus sylvatica) and oak (Quercus robur and petraea). Austrian Journal of Forest Science, 123: 35-46.
  13. IPCC (2003): Good Practice Guidance For Land Use, LandUse Change and Forestry. Available at http://www.ipccnggip.iges.or.jp/public/gpglulucf/gpglulucf.html (accessed Mar 22, 2014).
  14. Jalkanen A., Mäkipää R., Ståhl G., Lehtonen A., Petersson H. (2005): Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Annals of Forest Science, 62: 845-851. Go to original source...
  15. Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R. (2003): National scale biomass estimators for United States tree species. Forest Science, 49: 12-35.
  16. Joosten R., Schumacher J., Wirth Ch., Schulte A. (2004): Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in Western Germany. Forest Ecology and Management, 189: 87-96. Go to original source...
  17. Lambert M.C., Ung C.H., Raulier F. (2005): Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, 35: 1996-2018. Go to original source...
  18. Levy P.E., Hale S.E., Nicoll B.C. (2004): Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry, 77: 421-430. Go to original source...
  19. Lehtonen A., Mäkipää R., Heikkinen J., Sievänen R., Liski J. (2004): Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management, 188: 211-224. Go to original source...
  20. Lehtonen A., Cienciala E., Tatarinov F., Mäkipää R. (2007): Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Annals of Forest Science, 64: 133-140. Go to original source...
  21. Muukkonen P. (2007): Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126: 157-166. Go to original source...
  22. Neumann M., Jandl R. (2005): Derivation of locally valid estimators of the aboveground biomass of Norway spruce. European Journal of Forest Research, 124: 125-131. Go to original source...
  23. Pajtík J., Konôpka J., Lukac M. (2008): Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256: 1096-1103. Go to original source...
  24. Pajtík J., Konôpka B., Priwitzer T. (2011): Alokácia dendromasy v mladých porastoch buka obyčajného a duba zimného. Zprávy lesnického výzkumu, 56: 291-300.
  25. Parresol B.R. (1999): Assessing tree and stand biomass: A review with examples and critical comparisons. Forest Science, 45: 573-593.
  26. Petersson H., Holm S., Ståhl G., Alger D., Fridman J., Lehtonen A., Lundströma A., Mäkipää R. (2012): Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass - A comparative study. Forest Ecology and Management, 270: 78-84. Go to original source...
  27. Pretzsch H. (2000). Die Regeln von Reineke, Yoda und das Gesetz der räumlichen Allometrie. Allgemeine Forst- und Jagdzeitung, 171: 205-210.
  28. R Core Team (2012): R: A language and environment for statistical computing. Available at http://www.R-project.org/
  29. Repola J. (2009): Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica, 43: 625-647. Go to original source...
  30. Sakamoto, Y., Ishiguro, M., Kitagawa G. (1986): Akaike Information Criterion Statistics. D. Reidel Publishing Company.
  31. Schütz J.P. (2002): Silvicultural tools to develop irregular and diverse forest structures. Forestry, 74: 329-337. Go to original source...
  32. Skovsgaard J.P., Nord-Larsen T. (2012): Biomass, basic density and biomass expansion factor functions for European beech (Fagus sylvatica L.) in Denmark. European Journal of Forest Research, 131: 1035-1053. Go to original source...
  33. Snowdon P. (1991): A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research, 21: 720-724. Go to original source...
  34. Somogyi Z., Cienciala E., Mäkipää R., Muukkonen P., Lehtonen A., Weiss P. (2006): Indirect methods of largescale forest biomass estimation. European Journal of Forest Research, 126: 197-207. Go to original source...
  35. Sprugel D.G. (1983): Correcting for bias in log-transformed allometric equations. Ecology, 64: 209-210. Go to original source...
  36. ©rámek V., Lomský B., Novotný R. (2009): Hodnocení obsahu a zásoby ľivin v lesních porostech - literární přehled. Zprávy lesnického výzkumu, 54: 307-315.
  37. Tobin B., Nieuwenhuis M. (2007): Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. European Journal of Forest Research, 126: 189-196. Go to original source...
  38. Teobaldelli M., Somogyi Z., Migliavacca M., Usoltsev V.A. (2009): Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management, 3: 1004-1013. Go to original source...
  39. Vejpustková M., Čihák T., Zahradník D., ©rámek V. (2013): Metody stanovení nadzemní biomasy buku (Fagus sylvatica L.). Lesnický průvodce, 1/2013, VÚLHM: 28.
  40. Viną B., ©ika A. (1977): Biomasa nadzemních a podzemních částí vzorníků smrku. Práce VÚLHM, 51: 125-150. Go to original source...
  41. Vyskot M. (1980): Bilance biomasy hlavních lesních dřevin. Lesnictví, 26: 849-882. Go to original source...
  42. Vyskot M. (1990): Juvenile Beech in Biomass. Prague, Academia: 167.
  43. Wirth C., Schulze E.D., Schwalbe G., Tomczyk S., Weber G., Weller E., Böttcher H., Schumacher J., Vetter J. (2003): Dynamik der Kohlenstoffvorräte in den Wäldern Thüringens. Abschlussbericht zur 1. Phase des BMBF-Projektes "Modelluntersuchung zur Umsetzung des Kyoto-Protokolls". Jena, Max-Planck Institute for Biogeochemistry: 328.
  44. Wirth Ch., Schumacher J., Schulze E. (2004): Generic biomass functions for Norway spruce in Central Europe a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24: 121-139. Go to original source... Go to PubMed...
  45. Wutzler T., Wirth C., Schumacher J. (2008): Generic biomass function for Common Beech (Fagus sylvatica L.) in Central Europe: predictions and components of uncertainty. Canadian Journal of Forest Research, 38: 1661-1675. Go to original source...
  46. Zianis D., Mencuccini M. (2003): Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp. Annals of Forest Science, 60: 439-448. Go to original source...
  47. Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. (2005): Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica, Monographs 4: 63. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.