Plant Soil Environ., 2007, 53(5):193-200 | DOI: 10.17221/2205-PSE

Root excretion and plant tolerance to cadmium toxicity - a review

J. Dong1, W.H. Mao1,2, G.P. Zhang1, F.B. WU1, Y. Cai1
1 Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
2 Center of Analysis and Measurement, Zhejiang University, Hangzhou, P.R. China

Significant quantities of Cd have been added to soils globally due to various anthropogenic activities, posing a serious threat to safe food production and human health. Rhizosphere, as an important interface of soil and plant, plays a significant role in the agro-environmental system. This article presents a review of relationship between root excretion and microorganisms and plant resistance to Cd toxicity and possible mechanisms. Root exudates markedly altered in species and quantity under Cd stress. Root exudates can affect Cd absorption by plants through changing the physical and chemical characteristics of rhizospheres. The influence of root exudates on Cd bioavailability and toxicity may include modifying the rhizosphere pH and Eh, chelating/complexing and depositing with Cd ions, and altering the community construction, the numbers and activities of rhizospheric microbes. In this paper, the methods to reduce the transfer of Cd in soil-plant system by adjusting rhizosphere environment are discussed, and some aspects are also proposed that should be emphasized in the future research work.

Keywords: bioavailability; cadmium; microorganisms; rhizosphere; root excretion

Published: May 31, 2007  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Dong J, Mao WH, Zhang GP, WU FB, Cai Y. Root excretion and plant tolerance to cadmium toxicity - a review. Plant Soil Environ.. 2007;53(5):193-200. doi: 10.17221/2205-PSE.
Download citation

References

  1. Athur E., Crews H., Morgan C. (2000): Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. Int. J. Phytoremed., 2: 1-21. Go to original source...
  2. Chaignon V., Di Malta D., Hinsinger P. (2002): Fe-deficiency increases Cu acquisition by wheat cropped in a Cu-contaminated, vineyard soil. New Phytol., 154: 121-130. Go to original source...
  3. Chanmugathas P., Bollag J.M. (1987): Microbial mobilization of cadmium in soil under aerobic and anaerobic conditions. J. Environ. Qual., 16: 161-167. Go to original source...
  4. Cheng W.D., Zhang G.P., Yao H.G., Dominy P., Wu W.F., Wang R.Y. (2004): Possibility of predicting heavymetal contents in rice grains based on DTPA-extracted levels in soil. Commun. Soil Sci. Plant Anal., 35: 2731-2745. Go to original source...
  5. Davies F.T. Jr., Puryear J.D., Newton R.J., Egilla J.N., Saraiva G.J.A. (2001): Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol., 158: 777-786. Go to original source...
  6. Davis R.D. (1984): Cadmium - a complex environmental problem: Cadmium in sludge used as fertilizer. Experientia, 40: 117-126. Go to original source... Go to PubMed...
  7. del Val C., Barea J.M., Azcón-Aguilar C. (1999): Diversity of arbuscular mycorrhizal fungus populations in heavy-metalcontaminated soils. Appl. Environ. Microbiol., 65: 718-723. Go to original source... Go to PubMed...
  8. Díaz G., Azcón-Aguilar C., Honrubia M. (1996): Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthilis cytisoides. Plant Soil, 180: 1201-1205. Go to original source...
  9. Fischerová Z., Tlustoš P., Száková J., Šichorová K. (2006): A comparison of phytoremediation capability of selected plant species for given trace elements. Environ. Pollut., 144: 93-100. Go to original source... Go to PubMed...
  10. Francis A.J. (1990): Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes. Experientia, 46: 840-851. Go to original source...
  11. Frostegard A., Tunlid A., Baath E. (1993): Phospholipid fatty acid composition, biomass, and activity of microbial communities from 2 soil types experimentally exposed to different heavy-metals. Appl. Environ. Microbiol., 59: 3605-3617. Go to original source... Go to PubMed...
  12. Gadd G.M. (2000): Heavy metal pollutants: environmental and biotechnological aspects. Encyclop. Microbiol., 2: 607-617.
  13. Giller K.E., Nussbaum R., Chaudri A.M., McGrath S.P. (1993): Rhizobium meliloti is less sensitive to heavy-metal contamination in soil than R. leguminosarum bv. trifolii or R. loti. Soil Biol. Biochem., 25: 273-278. Go to original source...
  14. Giller K.E., Witter E., McGrath S.P. (1998): Toxicity of heavy metals to micro-organisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem., 30: 1389-1414. Go to original source...
  15. Griffiths B.S., Diaz-Ravina M., Ritz K., McNicol J.W., Ebblewhite N., Baath E. (1997): Community DNA hybridization and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiol. Ecol., 24:103-112. Go to original source...
  16. Gupta U.C., Gupta S.C. (1998): Trace element toxicity relationships to crop production and livestock and human health: Implications for management. Commun. Soil Sci. Plant Anal., 29: 1491-1522. Go to original source...
  17. Hassan M.J., Wang F., Ali S., Zhang G.P. (2005): Toxic effect of cadmium on rice as affected by nitrogen fertilizer form. Plant Soil, 277: 359-365. Go to original source...
  18. Helmisaari H.S., Makkonen K., Olsson M., Viksna A., Mälkönen E. (1999): Fine-root growth, mortality and heavy metal concentrations in limed and fertilized Pinus silvestris (L.) stands in the vicinity of a CuNi smelter in SW Finland. Plant Soil, 209: 193-200. Go to original source...
  19. Hinsinger P. (1998): How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv. Agron., 64: 225-265. Go to original source...
  20. Hinsinger P. (2001): Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil, 237: 173-195. Go to original source...
  21. Hinsinger P., Plassard C., Jaillard B. (2006): Rhizosphere: A new frontier for soil biogeochemistry. J. Geochem. Explor., 88: 210-213. Go to original source...
  22. Huang S.H. (1992): Mechanism of immobilizing metal by Bacteria. Microbiology, 19: 171-173. Go to original source...
  23. Jones D.L., Dennis P.G., Owen A.G., van Hees P.A.W. (2003): Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil, 248: 31-41. Go to original source...
  24. Jung C., Maeder V., Funk F., Frey B., Sticher H., Frossard E. (2003): Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil, 252: 301-312. Go to original source...
  25. Kabata Pendias A., Pendias H. (1992): Trace Elements in Soils and Plants. 2 nd ed. Baton Rouge: CRC Press. Fl.
  26. Kuo S., McNeal B.L. (1984): Effects of pH and phosphate on cadmium sorption by hydrous ferric oxide. Soil Sci. Soc. Am. J., 48: 1040-1044. Go to original source...
  27. Li M.M., Jiang H., Hou W.Q. (1998): Study on heavy metal biosorption of yeasts. Mycosystema, 17: 367-373.
  28. Liao M., Xie X.M. (2004): Cadmium release in contaminated soils due to organic acids. Pedosphere, 14: 223-228.
  29. Lima A.I.G., Pereira S.I.A., de Almeida Paula Figueira E.M., Caldeira G.C.N., de Matos Caldeira H.D.Q. (2006): Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ. Exp. Bot., 55: 149-162. Go to original source...
  30. Lin Q., Chen Y.X., Chen H.M., Zheng C.M. (2003): Study on chemical behavior of root exudates with heavy metals. Plant Nutr. Fertil. Sci., 9: 425-431.
  31. Lin Q., Zheng C.R., Chen H.M., Chen Y.X. (1998): Transformation of cadmium species in rhizosphere. Acta Pedol. Sin., 35: 461-467. (In Chinese)
  32. Lu R.K., Xiong L.M., Shi Z.Y. (1992): A review about studies on cadmium in soil-crop ecosystem. Soils, 24: 129-132, 137-141. (In Chinese)
  33. Meach M., Martin E. (1991): Mobilization of cadmium and other metals from two soils by root exudates of Zea may L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil, 132: 187-196. Go to original source...
  34. Obata H., Umebayashi M. (1997): Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J. Plant Nutr., 20: 97-105. Go to original source...
  35. Punz W.F., Sieghardt H. (1993): The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot., 33: 85-98. Go to original source...
  36. Rayner M.H., Sadler P.J. (1989): Cadmium accumulation and resistance mechanisms in bacteria. In: Poole R.K., Gadd G.M. (eds.): Metal-Microbe Interactions. Spec. Publ. Soc. Gen. Microbiol., 39-47.
  37. Römheld V. (1991): The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil, 130: 127-134. Go to original source...
  38. Ryan J.A., Pahren H.R., Lucas J.B. (1982): Controlling cadmium in the human food chain: a review and rationale based on health effects. Environ. Res., 18: 251-302. Go to original source... Go to PubMed...
  39. Schwab A.P., He Y.H., Banks M.K. (2005): The influence of organic ligands on the retention of lead in soil. Chemosphere, 61: 856-866. Go to original source... Go to PubMed...
  40. Sörense J. (1997): The rhizosphere as a habitat for soil microorganisms. In: van Elsas J.D., Trevors J.T., Wellington E.M.H. (eds.): Soil Microbiology. New York: Marcel Dekker, 21-45.
  41. Suhadolc M., Schroll R., Gattinger A., Schloter M., Munch J.V., Lestan D. (2004): Effects of modified Pb, Zn, and Cd availability on microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biol. Biochem., 36: 1943-1954. Go to original source...
  42. Szteke B., Jedrzejczak R. (1989): Influence of the environmental factors on cadmium content in strawberry fruit. Fruit Sci. Rep., 16: 1-6.
  43. Tang M. (1998): Progress in study on VA-mycorrhizal Fungi in enhancing plant resistance to salines-alkali and heavy metals Soils, 30: 251-254. (In Chinese)
  44. Tlustoš P., Száková J., Hrubý J., Hartman I., Najmanová J., Nedělník J., Pavlíková D., Batysta M. (2006): Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ., 52: 413-423. Go to original source...
  45. Tu S.I., Nungesser E., Brauer D. (1989): Characterization of the effects of divalent cations on the coupled activities of the H+-ATPase in tonoplast vesicles. Plant Physiol., 10: 1636-1643. Go to original source... Go to PubMed...
  46. Vivas A., Biró B., Ruíz-Lozano J.M., Barea J.M., Azcón R. (2006): Two bacterial strains isolated from a Znpolluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere, 62: 1523-1533. Go to original source... Go to PubMed...
  47. Vivas A., Vörös I., Biró B., Campos E., Barea J.M., Azcón R. (2003): Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ. Pollut., 126: 179-189. Go to original source... Go to PubMed...
  48. Vysloužilová M., Tlustoš P., Száková J. (2003): Zn and Cd phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ., 49: 542-547. Go to original source...
  49. Wang X., Wu Y.Y. (1995): Effect of modification treatments on behaviour of heavy metals in combined polluted soil. Chinese J. Appl. Ecol., 6: 440-444.
  50. Wang Z.W., Shan X.Q., Zhang S.Z. (2002): Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere, 46: 1163-1171. Go to original source... Go to PubMed...
  51. World Health Organization (1972): Evaluation of Certain Food Additives and of the Contaminants Mercury, Lead and Cadmium: FAO Nutrition Meetings Report Series No. 51, WHO Technical Report Series 505, Food and Agriculture Organization of the United Nations: Rome, Italy, 1972, 33.
  52. Wu F.B., Chen F., Wei K., Zhang G.P. (2004): Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere, 57: 447-454. Go to original source... Go to PubMed...
  53. Wu F.B., Dong J., Chen F., Zhang G.P. (2005b): Response of cadmium uptake in different barley genotypes to cadmium level. J. Plant Nutr., 28: 2201-2209. Go to original source...
  54. Wu F.B., Dong J., Qian Q.Q., Zhang G.P. (2005a): Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere, 60: 1437-1446. Go to original source... Go to PubMed...
  55. Wu F.B., Zhang G.P. (2002): Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J. Plant Nutr., 25: 1163-1173. Go to original source...
  56. Wu F.B., Zhang G.P., Dominy P. (2003): Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot., 50: 67-78. Go to original source...
  57. Xian X. (1989): Effect of chemical form of cadmium, zinc, and lead in polluted soil on their uptake by cabbage plants. Plant Soil, 113: 257-264. Go to original source...
  58. Xu J.K.,Yang L.X., Wang Y.L., Wang Z.Q. (2005): Advances in the study uptake and accumulation of heavy metal in rice (Oryza sativa) and its mechanisms. Chinese Bull. Bot., 22: 614-622.
  59. Yang X.E., Yang M.J. (1996): Transfer of cadmium from agricultural soils to human food chain. Chinese J. Guangdong Trace Elem. Sci., 3: 1-13.
  60. Yang Y., Chen Y.X., Tian G.M., Zhang Z.J. (2005): Microbial activity related to N cycling in the rhizosphere of maize stressed by heavy metals. J. Environ. Sci., 17: 448-451.
  61. Zenk M.H. (1996): Heavy metal detoxification in higher plants - a review. Gene, 179: 21-30. Go to original source... Go to PubMed...
  62. Zhang J.B., Huang W.N. (2000): Advances on physiological and ecological effects of cadmium on plants. Chinese J. Acta Ecol. Sin., 20: 514-523.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.