J. For. Sci., 2014, 60(6):236-247 | DOI: 10.17221/39/2014-JFS

Allometric equations for predicting aboveground biomass of beech-hornbeam standsin the Hyrcanian forests of IranOriginal Paper

A.A. Vahedi1, A. Mataji1, S. Babayi-Kafaki1, J. Eshaghi-Rad2, S.M. Hodjati3, A. Djomo4
1 Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Faculty of Natural Resources, Urmia University, Urmia, Iran
3 Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 Faculty of Arts and Science, Department of Geography, Queen's University, Kingston, Ontario, Canada

A better understanding of the carbon biomass from forests is needed to improve both models and mitigation efforts related to the global C cycle and greenhouse gas mitigation. Despite the importance of Hyrcanian forests for biodiversity conservation, no study with biomass destruction has been done to predict biomass and carbon pools from this forest. Mixed-specific regression equations with 45 sample trees using different input variables such as diameter, height and wood density were developed to estimate the aboveground biomass of beech-hornbeam stands. All the sample trees were harvested and the diameter at breast height (DBH) spanned from 31 to 104 cm so as to represent the diameter distribution reported in the beech-hornbeam stand management. Using only diameter as an input variable, the stands regression model estimates the aboveground biomass of the stand with an average deviation of 19% (R2adj = 0.92; SEE = 0.22). Adding height as the second explanatory variable slightly improved the estimation with an average deviation of 18% (R2adj = 0.95; SEE = 0.17). Adding only height or wood density did not improve significantly the estimations. Using the three variables together improved the precision of bole biomass prediction of stands with an average deviation of 10.3% (R2adj = 0.965; SEE = 0.167). 68% of the observed variation in the aboveground biomass of beech-hornbeam stands was explained only by diameter.

Keywords: climate change mitigation; carbon stock

Published: June 30, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vahedi AA, Mataji A, Babayi-Kafaki S, Eshaghi-Rad J, Hodjati SM, Djomo A. Allometric equations for predicting aboveground biomass of beech-hornbeam standsin the Hyrcanian forests of Iran. J. For. Sci.. 2014;60(6):236-247. doi: 10.17221/39/2014-JFS.
Download citation

References

  1. Aboal J.R., Arévalo J.R., Fernández A. (2005): Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flora, 200: 264-274. Go to original source...
  2. Alvarez E., Duque A., Saldarriaga J., Cabrera K., Salas G.D.L., Valle L.D., Lema A., Moreno F., Orrego S., Rodriguez L. (2012): Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267: 297-308. Go to original source...
  3. Baker T.R., Phillips O.L., Malhi Y., Almeida S., Arroyo L., Di Fiore A., Erwin T., Higuchi N., Killeen T.J., Laurance S.G., Laurance W.F., Lewis S.L., Lioyd J., Monteagudo A., Neill D.A., Patino S., Pitman N.C.A., Silva J.N.M., Vasquez Martinez R. (2004): Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10: 545-562. Go to original source...
  4. Basuki T.M., Van Laake P.E., Skidmore A.K., Hussin Y.A. (2009): Allometric equations for estimating the aboveground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257: 1684-1694. Go to original source...
  5. Bihamta M.R., Zare Chahouki M.A. (2011): Principles of Statistics for the Natural Resources Science. 3rd Ed. Tehran, University of Tehran Press: 300.
  6. Brown S. (2002): Measuring carbon in forests: current status and future challenges. Environmental Pollutant, 116: 363-372. Go to original source... Go to PubMed...
  7. Brown S., Gillespie A., Lugo A.E. (1989): Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35: 881-902.
  8. Chave J., Andalo C., Brown S., Cairns M.A., Chambers J.Q., Eamus D., Folster H., Fromard F., Higuchi N., Kira T., Lescure J.P., Nelson B.W., Ogawa H., Puig H., Riera B., Yamakura T. (2005): Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145: 87-99. Go to original source... Go to PubMed...
  9. Dias A.T.C., De Mattos E.A., Vieira S.A., Azeredo J.V., Sacarano F.R. (2006): Aboveground biomass stocks of native woodland on a Brazilian sandy coastal plain: estimates based on the dominant tree species. Forest Ecology and Management, 226: 364-367. Go to original source...
  10. Djomo A.N., Adamou I., Joachim S., Gode G. (2010): Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management, 260:1873-1885. Go to original source...
  11. Enquist B.J. (2002): Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22: 1045-1064. Go to original source... Go to PubMed...
  12. Fehrmann L., Kleinn C. (2006): General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe. Forest Ecology and Management, 236: 412-421. Go to original source...
  13. Feldpausch T.R., Banin L., Phillips O.L., Baker T.R., Lewis S.L., Quesada C.A., Affumbaffoe K., Aerts E., Berry N., bird M., Brondizio E.S., de Camargo P., Chave J., Djagbletey G., Domingues T., Drescher M., Fearnside P.M., Franc M.B., Fyllas N.M., LopezGonzalez G., Hladik A., Higuchi N., Hunter M., Iida Y., Abu Silam K., Rahman bin Kassim A., Keller M., Kemp J., King D., Lovett J.C., Marimon BS., Marimon Junior B.H., Marshall A.R., Metcalfe D.J., Mitchard E.T.A., Moran E.F., Nelson B.W., Nilus R., Nogueira E.M., Lenza de Oliveira E., Palace M., Pati S., Peh K.S.H., Raventos M.T., Reitsma J.M., Saiz G., Sonk´e B Taedoumg H.E., Tan S., Woll H., White L., Lloyd J. (2011): Height-diameter allometry of tropical forest trees. Biogeosciences, 8: 1081-1106. Go to original source...
  14. Henry M., Besnard A., Asante W.A., Eshun J., AduBredu S., Valentini R., Bernoux M., Saint-André L. (2010): Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260: 1375-1388. Go to original source...
  15. IUFRO (2004): Improvement and Silviculture of Beech. In: Proceedings of the 7th International Beech Symposium. Tehran, 10.-20. May 2004. Tehran, Research Institute of Forests and Rangelands: 186.
  16. Joosten R., Schumacher J., Wirth C., Schulte A. (2004): Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management, 189: 87-96. Go to original source...
  17. Ketterings Q.M., Coe R., Noordwijk M.V., Ambagau Y., Palm C.A. (2001): Reducing uncertainty in the use of allometric biomass equations for predicting abone-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146: 199-209. Go to original source...
  18. Mani S., Parthasarathy N. (2007): Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass and Bioenergy, 31: 284-290. Go to original source...
  19. Marshall A.R., Willcock S., Platts P.J., Lovett J.C., Balmford A., Burgess N.D., Latham J.E., Munishi P.K.T., Salter R., Shirima D.D., Lewis S.L. (2012): Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation, 154: 20-23. Go to original source...
  20. Marvi-Mohajer M.R. (2004): Silviculture. Tehran, University of Tehran Press: 387.
  21. Navar J. (2009): Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257: 427-434. Go to original source...
  22. Nelson B.W., Mesquita R., Pereira J.L.G., de Souza S.G.A., Batista G.T., Couta L.B. (1999): Allometric regressions for improved estimate of secondary forest biomass in the Central Amazon. Forest Ecology and Management, 117: 149-167. Go to original source...
  23. Niklas K.J. (2004): Plant allometry: is there a grand unifying theorem? Biological Review, 79: 871-889. Go to original source... Go to PubMed...
  24. Niklas K.J. (2006): Scaling the paths of resistance. New Phytologist, 169: 219-222. Go to original source... Go to PubMed...
  25. Peichl M., Arain M.A. (2006): Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140: 51-63. Go to original source...
  26. Peichl M., Arain M.A. (2007): Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management, 253: 68-80. Go to original source...
  27. Pérez-Cruzado C., Rodriguez-Soalleiro R. (2011): Improvement in accuracy of aboveground biomass estimation in Eucalyptus nitens plantations: Effect of bole sampling intensity and explanatory variables. Forest Ecology and Management, 261: 2016-2028. Go to original source...
  28. Pilli R., Anfodillo T., Carrer M. (2006): Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management, 237: 583-593. Go to original source...
  29. Razakamanarivo RH., Razakavololona A., Razafindrakoto MA., Vieilledent G., Albrecht A. (2012): Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar. Biomass and Bioenergy, 45: 1-10. Go to original source...
  30. Ribeiro C.S., Fehrmann L., Boechat Soares C.P., Gonçalves Jacovine L.A., Kleinn C., de Oliveira Gaspar R. (2011): Above- and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management, 262: 491-499. Go to original source...
  31. Rouhi-Moghaddam E., Hosseini S.M., Ebrahimi E., Tabari M., Rahmani A. (2008): Comparison of growth, nutrition and soil properties of pure stands of Quercus castaneifolia and mixed with Zelkova carpinifolia in the Hyrcanian forests of Iran. Forest Ecology and Management, 255: 1149-1160. Go to original source...
  32. Santa Regina I. (2000): Biomass estimation and nutrient pools in four Quercus pyrenaica in Sierra de Gata Mountains, Salamanca, Spain. Forest Ecology and Management, 132: 127-141. Go to original source...
  33. Shackleton C.M., Scholes R.J. (2011): Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa. South African Journal of Botany, 77: 184-192. Go to original source...
  34. Ulrich W. (2004): Allometric ecological distributions in a local community of Hymenoptera. Acta Oecologica, 25: 179-186. Go to original source...
  35. Vann D.R., Palmiotto P.A., Richard S. (1998): Allometric equations for two South American conifers: Test of a non-destructive method. Forest Ecology and Management, 106: 55-71. Go to original source...
  36. Xiao C.W., Ceulemans R. (2004): Allometric relationships for below- and aboveground biomass of young Scots pines. Forest Ecology and Management, 203: 177-186. Go to original source...
  37. Yen T.M., Ai L.M., Li C.L., Lee J.S., Huang K.L. (2009): Aboveground carbon contents and storage of three major Taiwanese conifer species. Taiwan Journal Forest Science, 24: 91-102.
  38. Yen T.M., Ji Y.J., Lee J.S. (2010) Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management, 260: 339-344. Go to original source...
  39. Yen T.M., Lee J.S. (2011): Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management, 261: 995-1002. Go to original source...
  40. Zhu B., Wang X., Fang W., Piao S., Shen H., Zhao S., Peng C. (2010): Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research, 123: 439-452. Go to original source... Go to PubMed...
  41. Zianis D. (2008): Predicting mean aboveground forest biomass and its associated variance. Forest Ecology and Management, 256: 1400-1407. Go to original source...
  42. Zianis D., Mencuccini M. (2003): Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, northern Greece, and generalised equations for Fagus sp. Annals of Forest Science, 60: 439-448. Go to original source...
  43. Zianis D., Mencuccini M. (2004): On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187: 311-332. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.