Plant Soil Environ., 2019, 65(2):90-96 | DOI: 10.17221/620/2018-PSE

Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant speciesOriginal Paper

Helena Hniličková*,1, František Hnilička1, Matyáš Orsák2, Václav Hejnák1
1 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

This study monitors the effect of salt stress induced by a NaCl solution (0 - deionized water, 50, 100, 200, 300 mmol/L) in lettuce (Lactuca sativa L. cv. Orion), New Zealand spinach (Tetragonia tetragonoides (Pall) Kuntze) and common purslane (Portulaca oleracea L. cv. Green Purslane) over the course of 50 days. The diverse reactions of these monitored species to salt stress are well apparent from the results. Lettuce proved as the most sensitive to salt stress, showing a significant reduction of dry weight, where even lower concentrations of salt affected membrane stability through increased electrolyte leakage value and an imbalance in the content of Na+ and K+, observed in the form of lower ratios of K+/Na+. In case of T. tetragonoides, lower salt concentrations positively affected growth and this species appears to particularly accumulate sodium. In case of P. oleracea no significant reduction of dry weight took place with the increasing concentration of NaCl and a naturally high content of potassium contributed to maintaining a favourable ratio of K+/Na+ even at higher salt concentrations, which is one of the prerequisites of salt-stress tolerance.

Keywords: salt tolerance; salinity; toxicity; stress response; ion imbalance

Published: February 28, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hniličková H, Hnilička F, Orsák M, Hejnák V. Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ.. 2019;65(2):90-96. doi: 10.17221/620/2018-PSE.
Download citation

References

  1. Akbarimoghaddam H., Galavi M., Ghanbari A., Panjehkeh N. (2011): Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9: 43-50.
  2. Alam A., Juraimi A.S., Yusop M.R., Hamid A.A., Hakim A. (2014): Morpho-physiological and mineral nutrient characterization of 45 collected Purslane (Portulaca oleracea L.) accessions. Bragantia, 73: 426-437. Go to original source...
  3. Al-Maskri A., Al-Kharusi L., Al-Miqbali H., Khan M.M. (2010): Effects of salinity stress on the growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. International Journal of Agriculture and Biology, 12: 377-380.
  4. Ashraf M. (2004): Some important physiological selection criteria for salt tolerance in plants. Flora - Morphology, Distribution, Functional Ecology of Plants, 199: 361-376. Go to original source...
  5. Ashraf M., Ali Q. (2008): Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63: 266-273. Go to original source...
  6. Aslam R., Bostan N., Nabgha-e-Amen, Maria M., Safdar W. (2011): A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plants Research, 5: 7108-7118. Go to original source...
  7. Bartha C., Fodorpataki L., Martinez-Ballesta M. del C., Popescu O., Carvajal M. (2015): Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. Journal of Applied Botany and Food Quality, 88: 42-48.
  8. Carillo P., Annunziata M.G., Pontecorvo G., Fuggi A., Woodrow P. (2011): Salinity stress and salt tolerance. In: Shanker A.K., Venkateswarlu B. (eds.): Abiotic Stress in Plants - Mechanisms and Adaptations. Rijeka, InTech. Go to original source...
  9. Cheeseman J.M. (2015): The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytologist, 206: 557-570. Go to original source... Go to PubMed...
  10. Dajic Z. (2006): Salt stress. In: Madhava R.K.V., Raghavendra A.S., Janardhan R.K. (eds.): Physiology and Molecular Biology of Stress Tolerance in Plants. Dordrecht, Springer. Go to original source...
  11. Demidchik V., Straltsova D., Medvedev S.S., Pozhvanov G.A., Sokolik A., Yurin V. (2014): Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65: 1259-1270. Go to original source... Go to PubMed...
  12. Di Mola I., Rouphael Y., Colla G., Fagnano M., Paradiso R., Mori M. (2017): Morphophysiological traits and nitrate content of greenhouse lettuce as affected by irrigation with saline water. HortScience, 52: 1716-1721. Go to original source...
  13. Fakhrfeshani M., Shahriari-Ahmadi F., Niazi A., Moshtaghi N., Zare-Mehrjerdi M. (2015): The effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis. Journal of Plant Molecular Breeding, 3: 1-10.
  14. Flowers T.J., Colmer T.D. (2008): Salinity tolerance in halophytes. New Phytologist, 179: 945-963. Go to original source... Go to PubMed...
  15. Geilfus C.M. (2018): Chloride: From Nutrient to Toxicant. Plant and Cell Physiology, 59: 877-886. Go to original source... Go to PubMed...
  16. Gu M.F., Li N., Shao T.Y., Long X.H., Brestič M., Shao H.B., Li J.B., Mbarki S. (2016): Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant, Soil and Environment, 62: 314-320. Go to original source...
  17. James R.A., Blake C., Byrt C.S., Munns R. (2011): Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 62: 2939-2947. Go to original source... Go to PubMed...
  18. Kafi M., Rahimi Z. (2011): Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition, 57: 341-347. Go to original source...
  19. Kim S.K., Kim I.K., Lee G.J. (2011): Growth responses of New Zealand spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity. CNU Journal of Agricultural Science, 38: 631-639.
  20. Maathuis F.J., Amtmann A. (1999): K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany, 84: 123-133. Go to original source...
  21. Mahajan S., Tuteja N. (2005): Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444: 139-158. Go to original source... Go to PubMed...
  22. Mahmoudi H., Kaddour R., Huang J., Nasri N., Olfa B., M'Rah S., Hannoufa A., Lachaâl M., Ouerghi Z. (2011): Varied tolerance to NaCl salinity is related to biochemical changes in two contrasting lettuce genotypes. Acta Physiologiae Plantarum, 33: 1613-1622. Go to original source...
  23. Mansour M.M.F., Salama K.H.A. (2004): Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany, 52: 113-122. Go to original source...
  24. Munns R., Tester M. (2008): Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. Go to original source... Go to PubMed...
  25. Neves M.A., Miguel M.G., Marques C., Panagopoulos T., Beltrão J. (2008): The combined effects of salts and calcium on growth and mineral accumulation on Tetragonia tetragonioides. WSEAS Transactions on Environment and Development, 4: 1-5.
  26. Nikalje G.C., Srivastava A.K., Pandey G.K., Suprasanna P. (2017): Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degradation and Development, 29: 1081- 1095. Go to original source...
  27. Ryuk J.A., Ko B.S., Lee H.W., Kim D.S., Kang S., Lee Y.H., Park S. (2017): Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines. Experimental Biology and Medicine (Maywood), 42: 593-605. Go to original source... Go to PubMed...
  28. Shrivastava P., Kumar R. (2015): Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22: 123-131. Go to original source... Go to PubMed...
  29. Sun Z.W., Ren L.K., Fan J.W., Li Q., Wang K.J., Guo M.M., Wang L., Li J., Zhang G.X., Yang Z.Y., Chen F., Li X.N. (2016): Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. Plant, Soil and Environment, 62: 515-521. Go to original source...
  30. Tavakkoli E., Rengasamy P., McDonald G.K. (2010): High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61: 4449-4459. Go to original source... Go to PubMed...
  31. Tester M., Danenport R. (2003): Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91: 503-527. Go to original source... Go to PubMed...
  32. Uddin M.K., Juraimi A.S., Anwar F., Hossain M.A., Alam M.A. (2012): Effect of salinity on proximate mineral composition of purslane (Portulaca oleracea L.). Australian Journal of Crop Science, 12: 1732-1736.
  33. Ünlükara A., Cemek B., Karaman S., Ersahin S. (2008): Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36: 263-271. Go to original source...
  34. Yousif B.S., Nguyen N.T., Fukuda Y., Hakata H., Okamoto Y., Masaoka Y., Saneoka H. (2010): Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegetable crops; New Zealand spinach (Tetragonia tetragonioides) and water spinach (Ipomoea aquatica). International Journal of Agriculture and Biology, 12: 211-216.
  35. Zakharin A.A., Panichkin L.A. (2009): Glycophyte salt resistance. Russian Journal of Plant Physiology, 56: 94-103. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.