Research Article
BibTex RIS Cite

Müdahale Görmemiş Genç Kızılçam (Pinus brutia Ten.) Ağaçlandırma Alanlarındaki Mağlup Ağaçlarda Tepe Yanıcı Madde Miktarının Tahmini

Year 2019, Volume: 19 Issue: 3, 350 - 359, 23.12.2019
https://doi.org/10.17475/kastorman.662733

Abstract

Çalışmanın amacı: Kızılçam Türkiye’deki en yaygın ibreli orman ağacı türüdür. Çoğunlukla ülkenin yangına hassas bölgelerinde yayılmaktadır. Odun üretimindeki ekonomik önemi ve orman yangınları ile mücadele çalışmalarındaki belirleyici rolü bu orman ağacını değerli ve önemli kılmaktadır. Bu çalışma, ağaçlandırma alanlarındaki mağlup kızılçam ağaçlarındaki tepe yanıcı madde miktarını açıklamaktadır.
Çalışma alanı: Çalışma alanı Batı Karadeniz Bölgesi’nde yer almaktadır. Örnekleme alanları Hacımahmut Orman İşletme Şefliği sınırları içinde yer almaktadır.
Materyal ve yöntem: Ağaçlar hiç müdahale görmemiş genç kızılçam ağaçlandırma alanlarından seçilmiştir. Ağaçlar tepe yanıcı madde miktarları ve özelliklerinin elde edilmesinde kullanılmıştır. Bu amaçla 30 adet mağlup gövde genç kızılçam ağacı kesilmiş ve örneklenmiştir.
Sonuçlar: Örneklenen ağaçlarda fırın kurusu toplam canlı ibre miktarı 0.54 kg – 3.19 kg ve toplam canlı tepe yanıcı madde miktarı 1.96 kg – 12.37 kg arasında değişmektedir. Çalışmada, bazı ağaç özellikleri dikkate alınarak tepe yanıcı madde miktarını tahmin eden regresyon modelleri geliştirilmiştir. Geliştirilen bu modellerin R2 değerleri 0.79 ile 0.89 arasındadır.
Önemli vurgular: Regresyon analizi sonuçlarına göre toplam canlı tepe yanıcı madde miktarının göğüs yüksekliğindeki çap (DBH) ve tepe altı yüksekliğiyle (CBH) kuvvetli ilişkili olduğunu göstermiştir.

References

  • Agee, J. K., B. Bahro, M. A., Finney, P. N., Omi, D. B., Sapsis, C. N., Skinner, J. W., Van Wagtendonk, & Weatherspoon, C. P. (2000). The use of shaded fuelbreaks in landscape fire management. Forest Ecology and Management. 127(1–3), 55– 66.
  • Agee, J. K. & Skinner, C.N. (2005). Basic principles of forest fuel reduction treatments. Forest Ecology and Management, 211, 83–96.
  • Alexander, M. E. (1998). Crown fire thresholds in exotic pine plantations of Australasia. Ph.D. Thesis, Aust. Natl. Univ., Canberra, Australia Capital Territory.
  • Alexander, M. E., Cruz, M. G., Vaillant, N. M., and Peterson, D. L. (2013). Crown fire behavior characteristics and prediction in conifer forests: a state-of-knowledge synthesis. Final report to the Joint Fire Science Program, project 09-S-03-1.
  • Alexander, M. E., Cruz, M. G. (2016). Crown fire dynamics in conifer forests. In ‘Synthesis of knowledge of extreme fire behavior: Volume 2 for fire behavior specialists, researchers, and meteorologists’. USDA Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-891, 163–258 (Portland, OR, USA).
  • Attiwill, P. M. (1994). The disturbance of forest ecosystems: the ecological basis for conservative management. Forest Ecology and Management, 63, 247-300.
  • Bilgili, E. (2003). Stand development and fire behavior. Forest Ecology and Management, 179, 333-339.
  • Bilgili, E., Dinc, Durmaz, B., Saglam, B., Kucuk, O. & Baysal, I. (2006). Fire Behavior in Immature Calabrian Pine Plantations, Forest Ecology and Management, 234, 77-112.
  • Bilgili, E. & Kucuk, O. (2009). Estimating above-ground fuel biomass in young calabrian pine (Pinus brutia Ten.) in Turkey. Energy and Fuels, 23, 1797-1800.
  • Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Mortiz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R. & Pyne, S. J. (2009). Fire in the Earth System, Science, 324, 480–484.
  • Brown, J. K. (1978). Weight and density of crown of Rocky Mountain conifers. US For. Serv. Res. Pap. INT-197. 56.
  • Byram, G. M. (1959). Combustion of forest fuels. Chapter 3. In Forest fire: control and use. Ed. K.P. Davis. McGraw-Hill, New York. 61–89.
  • Cruz, M. G., Alexander, M. E. & Wakimoto, R. H. (2003). Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. International Journal of Wildland Fire, 12, 39–50.
  • Cruz, M. G., Alexander, M. E. & Dam, J. E. (2014). Using modeled surface and crown fire behavior characteristics to evaluate fuel treatment effectiveness: a caution, Forest Science, 60(5), 1000-1004.
  • Cruz, M. G., Butler, B. W., Alexander, M. E., Forthofer, J. M. & Wakimoto, R. H. (2006). Predicting the ignition of crown fuels above a spreading surface fire, Part I: model idealization. International Journal of Wildland Fire, 15, 47-60.
  • Cruz, M. G. & Fernandes, P. A. M. (2008). Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait.) stands. International Journal of Wildland Fire 17, 194–204. doi:10.1071/ WF07009
  • de-Miguel, S., Pukkala, T., Assaf, N. & Shater, Z. (2014). Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia, Annals of Forest Science, 71, 101-112.
  • Durkaya, A., Durkaya, B. & Ünsal, A. (2009). Predicting the aboveground biomass of calabrian pine (Pinus brutia Ten.) stands in Turkey. African Journal of Biotechnology. 8, 2483–2488.
  • Eker, M., Poudel, K. P. & Ozcelik, R. (2017). Aboveground biomass equations for small trees of Brutian pine in Turkey to facilitate harvesting and management. Forests, 8, 477.
  • Fernandes, P. M. (2009). Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Annals of Forest Science. 66(4), 415- 415.
  • Finney, M. A. (1998). FARSITE: Fire Area Simulator—model development and evaluation. Research Paper. RMRS-RP-4. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 47.
  • Gadow, K. V. (2000). Evaluating risk in forest planning models. Silva Fennica, 34(2), 181-191.
  • GDF, (2018). Ecosystem Based Functional Forest Management Plan of Hacımahmut Forest Enterprise. Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Forestry. Ankara, Turkey.
  • Gould, J. S., McCaw, W. L., Cheney, N. P., Ellis, P.F. & Matthews, S. (2008). Field guide: Fuel assessment and fire behaviour prediction in dry eucalypt forest. Interim ed. 2007. CSIRO Publishing, Collingwood, VIC. 92.
  • Gould, J. & Cruz, M. (2012). Australian Fuel Classification: Stage II. Ecosystem Sciences and Climate Adaption Flagship Report. CSIRO, Canberra, Australia.
  • Hessburg, P. F., Reynolds, K. M., Keane, R. E., James, K. M., Salter, R. B. (2007). Evaluating wildland fire danger and prioritizing vegetation and fuels treatments. Forest Ecology and Management, 247, 1–17.
  • Johnson, A., Woodard, P., & Titus, S. (1990). Lodgepole pine and white spruce crown fuel weights predicted from diameter at breast height. Forestry Chronicle, 66, 596–599.
  • Kraft, G. (1884). Beitrage zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Hannover, Germany: Klindworth’s.
  • Kucuk, O. & Bilgili, E. (2007a). Crown Fuel Load for Young Calabrian Pine (Pinus brutia Ten.) Trees. Kastamonu University, Journal of Forestry Faculty, 7(2), 180-189.
  • Kucuk, O., Bilgili, E. & Fernandes, P. M. 2015. Fuel modeling and potential fire behavior in Turkey. Sumarski list, 139(11-12), 553-560.
  • Kucuk, O., Bilgili, E., Saglam, B., Dinc Durmaz, B. & Baysal, I. (2007b). The Studies to Support a Fire Danger Rating System in Turkey, Kastamonu University, Journal of Forestry Faculty, 7(1), 104-109.
  • Kucuk, O., Saglam, B. & Bilgili, E. (2007c). Canopy fuel characteristics and fuel load in young black pine trees. Biotechnology and Biotechnological Equipment 21(2), 235-240.
  • Kucuk, O., Bilgili, E. & Saglam, B. (2008a). Estimating Crown Fuel Loading for Calabrian Pine and Anatolian Black Pine,” International Journal of Wildland Fire, 17(1), 147-154.
  • Kucuk O. & E. Bilgili. (2008b). Crown fuel acteristics and fuel load estimates in young calabrian pine (Pinus brutia Ten.) stands in northwestern of Turkey, Fresenius Environmental Bulletin,17(12b), (2226-2231).
  • Mitsopoulos, I. D. & Dimitrakopoulos, A.P. (2007). Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis Mill.) in Greece. IJWF, 16, 642–647.
  • Reinhardt, E.D., Scott, J., Gray, K. & Keane, R. (2006). Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements. Canadian Journal of Forest Research, 36, 2803–2814.
  • Rothermel, R. C. (1991). Predicting behavior and size of crown fires in the Northern Rocky Mountains. Res. Pap. INT-438. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 46.
  • Sakici, O. E., Kucuk, O. & Ashraf, M. I. (2018). Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.). Environmental Monitoring and Assessment, 190, 285.
  • Smith, D. M., Larson, B. M., Kelty, M. J., Ashton, P. M. S. (1996). Theory and practice of silviculture: applied forest ecology. 9th ed. New York. Wiley, 1996.
  • Scott, J. H. 1999. NEXUS: a system for assessing crown fire hazard. Fire Management Notes. 59(2), 20-24.
  • Sonmez, T., Kahriman, A., Şahin, A. & Yavuz, M. (2016). Biomass equations for Calabrian pine in the Mediterranean region of Turkey. Šumarski List, 11-12, 567–576.
  • Scott, J. H. & Reinhardt, E. D. (2002). Estimating canopy fuels in conifer forests. Fire Management Today, 62, 45−50.
  • Stocks, B. J. (1980). Black spruce crown fuel weights in northern Ontario. Canadian Journal of Forest Research, 17, 80-86.
  • Stocks, B. J. Alexander, M. E. Wotton, B. M. Stefner, C. N. Flannigan, M. D. Taylor, S. W. Lavoie, N. Mason, J. A. Hartley, G. R. Maffey, M. E. Dalrymple, G. N. Blake, T. W. Cruz, M. G. & Lanoville, R. A. (2004). Crown fire behaviour in a northern jack pine black spruce forest. Canadian Journal of Forest Research, 34, 1548–1560.
  • Sun, O., Uğurlu, S. & Özer, E. (1980). Kızılçam (Pinus brutia Ten.) türüne ait biyolojik kütlenin saptanması. Ormancılık Araştırma Enstitüsü Teknik Bülteni, Teknik Bülten Serisi No: 104, 32.
  • Taylor, S. W.;, Pike, R. G. &; Alexander, M. E. (1997). Field Guide to the Canadian Forest Fire Behavior Prediction (FBP) System, Technical Report 11, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta
  • Ter-Mikaelian, M. T. & Korzukhin, M. D. (1997). Biomass equations for sixtyfive North American tree species. Forest Ecology and Management. 97, 1–24.
  • Turner, M. G. & Romme, W. H. (1994). Landscape Dynamics in crown fire ecosystems. Landscape Ecology, 9(1), 59-77.
  • Van Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research. 7, 23–34.
  • Van Wagner, C. E. (1978). Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research, 8, 220-227.
  • Veblen, T. T. (2000). Disturbance patterns in southern Rocky Mountain forests. Pages 31–54 in Knight, R.L.; Smith F.W.; Buskirk, S.W; Romme, W.H; Baker, W.L. eds. Forest Fragmentation in the Southern Rocky Mountains. Boulder: University Press of Colorado.
  • Viegas, D. X. (2012). Extreme Fire Behaviour. In Forest Management: Technology, Practices and Impact; Bonilla Cruz, A.C., Guzman Correa, R.E., Eds.; Nova Science Publishers: New York, NY, USA, 1–56.
  • Weaver, H. (1943). Fire as an ecological and silvicultural factor in the ponderosa pine region of the Pacific Slope. Journal of Forestry, 41(1), 7–15.
  • Weaver, H. (1967). Fire and its relationship to ponderosa pine. In Proceedings Tall Timbers Fire Ecology Conference. 7, 127-149.
  • Werth, P. A., Potter, B. E., Clements, C. B., Finney, M. A., Goodrick, S. L., Alexander, M. E., Cruz, M. G., Forthofer, J. A. & McAllister, S. S. (2011). Synthesis of knowledge of extreme fire behavior: volume I for fire managers. Gen. Tech. Rep. PNW-GTR-854. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 144.
  • Zianis, D., Xanthopoulos, G., Kalabodikis, K., Kazakis, G., Ghosn, D. & Roussou, O. (2011). Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands Greece. European Journal of Forest Research, 130, 145-160.

Estimation of Crown Fuel Load of Suppressed Trees in Non-treated Young Calabrian Pine (Pinus brutia Ten.) Plantation Areas

Year 2019, Volume: 19 Issue: 3, 350 - 359, 23.12.2019
https://doi.org/10.17475/kastorman.662733

Abstract

Aim of study: Pinus brutia is the most widespread conifer forest tree species in Turkey. It is mainly distributed in fire sensitive regions of the country. The economic importance in wood production and the deterministic role in forest fires fighting activities make this forest tree more valuable and important. This study describes crown fuel load of suppressed trees in non-treated young Calabrian pine stands.
Area of study: The study area is located in the Western Black Sea region of Turkey. Sampling plots were located in Hacımahmut Forest Planning Unit.
Material and methods: Trees were selected from non-treated young Calabrian pine plantation stands and used to obtain live crown fuel load and characteristics. For this purpose, 30 young suppressed trees were cut and sampled.
Main results: In sampled trees, oven dried total live needle biomass ranged between 0.54 kg and 3.19 kg and total live crown fuel load chanced between 1.96 kg and 12.73 kg. Regression models to estimate crown fuel load were developed according to some tree characteristics. Models developed explained 0.79 to 0.89% of the observed variation.
Highlights: Regression analysis indicated that the total live crown fuel load was strongly correlated with both diameters at breast height (DBH) and crown base height (CBH).

References

  • Agee, J. K., B. Bahro, M. A., Finney, P. N., Omi, D. B., Sapsis, C. N., Skinner, J. W., Van Wagtendonk, & Weatherspoon, C. P. (2000). The use of shaded fuelbreaks in landscape fire management. Forest Ecology and Management. 127(1–3), 55– 66.
  • Agee, J. K. & Skinner, C.N. (2005). Basic principles of forest fuel reduction treatments. Forest Ecology and Management, 211, 83–96.
  • Alexander, M. E. (1998). Crown fire thresholds in exotic pine plantations of Australasia. Ph.D. Thesis, Aust. Natl. Univ., Canberra, Australia Capital Territory.
  • Alexander, M. E., Cruz, M. G., Vaillant, N. M., and Peterson, D. L. (2013). Crown fire behavior characteristics and prediction in conifer forests: a state-of-knowledge synthesis. Final report to the Joint Fire Science Program, project 09-S-03-1.
  • Alexander, M. E., Cruz, M. G. (2016). Crown fire dynamics in conifer forests. In ‘Synthesis of knowledge of extreme fire behavior: Volume 2 for fire behavior specialists, researchers, and meteorologists’. USDA Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-891, 163–258 (Portland, OR, USA).
  • Attiwill, P. M. (1994). The disturbance of forest ecosystems: the ecological basis for conservative management. Forest Ecology and Management, 63, 247-300.
  • Bilgili, E. (2003). Stand development and fire behavior. Forest Ecology and Management, 179, 333-339.
  • Bilgili, E., Dinc, Durmaz, B., Saglam, B., Kucuk, O. & Baysal, I. (2006). Fire Behavior in Immature Calabrian Pine Plantations, Forest Ecology and Management, 234, 77-112.
  • Bilgili, E. & Kucuk, O. (2009). Estimating above-ground fuel biomass in young calabrian pine (Pinus brutia Ten.) in Turkey. Energy and Fuels, 23, 1797-1800.
  • Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Mortiz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R. & Pyne, S. J. (2009). Fire in the Earth System, Science, 324, 480–484.
  • Brown, J. K. (1978). Weight and density of crown of Rocky Mountain conifers. US For. Serv. Res. Pap. INT-197. 56.
  • Byram, G. M. (1959). Combustion of forest fuels. Chapter 3. In Forest fire: control and use. Ed. K.P. Davis. McGraw-Hill, New York. 61–89.
  • Cruz, M. G., Alexander, M. E. & Wakimoto, R. H. (2003). Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. International Journal of Wildland Fire, 12, 39–50.
  • Cruz, M. G., Alexander, M. E. & Dam, J. E. (2014). Using modeled surface and crown fire behavior characteristics to evaluate fuel treatment effectiveness: a caution, Forest Science, 60(5), 1000-1004.
  • Cruz, M. G., Butler, B. W., Alexander, M. E., Forthofer, J. M. & Wakimoto, R. H. (2006). Predicting the ignition of crown fuels above a spreading surface fire, Part I: model idealization. International Journal of Wildland Fire, 15, 47-60.
  • Cruz, M. G. & Fernandes, P. A. M. (2008). Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait.) stands. International Journal of Wildland Fire 17, 194–204. doi:10.1071/ WF07009
  • de-Miguel, S., Pukkala, T., Assaf, N. & Shater, Z. (2014). Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia, Annals of Forest Science, 71, 101-112.
  • Durkaya, A., Durkaya, B. & Ünsal, A. (2009). Predicting the aboveground biomass of calabrian pine (Pinus brutia Ten.) stands in Turkey. African Journal of Biotechnology. 8, 2483–2488.
  • Eker, M., Poudel, K. P. & Ozcelik, R. (2017). Aboveground biomass equations for small trees of Brutian pine in Turkey to facilitate harvesting and management. Forests, 8, 477.
  • Fernandes, P. M. (2009). Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Annals of Forest Science. 66(4), 415- 415.
  • Finney, M. A. (1998). FARSITE: Fire Area Simulator—model development and evaluation. Research Paper. RMRS-RP-4. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 47.
  • Gadow, K. V. (2000). Evaluating risk in forest planning models. Silva Fennica, 34(2), 181-191.
  • GDF, (2018). Ecosystem Based Functional Forest Management Plan of Hacımahmut Forest Enterprise. Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Forestry. Ankara, Turkey.
  • Gould, J. S., McCaw, W. L., Cheney, N. P., Ellis, P.F. & Matthews, S. (2008). Field guide: Fuel assessment and fire behaviour prediction in dry eucalypt forest. Interim ed. 2007. CSIRO Publishing, Collingwood, VIC. 92.
  • Gould, J. & Cruz, M. (2012). Australian Fuel Classification: Stage II. Ecosystem Sciences and Climate Adaption Flagship Report. CSIRO, Canberra, Australia.
  • Hessburg, P. F., Reynolds, K. M., Keane, R. E., James, K. M., Salter, R. B. (2007). Evaluating wildland fire danger and prioritizing vegetation and fuels treatments. Forest Ecology and Management, 247, 1–17.
  • Johnson, A., Woodard, P., & Titus, S. (1990). Lodgepole pine and white spruce crown fuel weights predicted from diameter at breast height. Forestry Chronicle, 66, 596–599.
  • Kraft, G. (1884). Beitrage zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Hannover, Germany: Klindworth’s.
  • Kucuk, O. & Bilgili, E. (2007a). Crown Fuel Load for Young Calabrian Pine (Pinus brutia Ten.) Trees. Kastamonu University, Journal of Forestry Faculty, 7(2), 180-189.
  • Kucuk, O., Bilgili, E. & Fernandes, P. M. 2015. Fuel modeling and potential fire behavior in Turkey. Sumarski list, 139(11-12), 553-560.
  • Kucuk, O., Bilgili, E., Saglam, B., Dinc Durmaz, B. & Baysal, I. (2007b). The Studies to Support a Fire Danger Rating System in Turkey, Kastamonu University, Journal of Forestry Faculty, 7(1), 104-109.
  • Kucuk, O., Saglam, B. & Bilgili, E. (2007c). Canopy fuel characteristics and fuel load in young black pine trees. Biotechnology and Biotechnological Equipment 21(2), 235-240.
  • Kucuk, O., Bilgili, E. & Saglam, B. (2008a). Estimating Crown Fuel Loading for Calabrian Pine and Anatolian Black Pine,” International Journal of Wildland Fire, 17(1), 147-154.
  • Kucuk O. & E. Bilgili. (2008b). Crown fuel acteristics and fuel load estimates in young calabrian pine (Pinus brutia Ten.) stands in northwestern of Turkey, Fresenius Environmental Bulletin,17(12b), (2226-2231).
  • Mitsopoulos, I. D. & Dimitrakopoulos, A.P. (2007). Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis Mill.) in Greece. IJWF, 16, 642–647.
  • Reinhardt, E.D., Scott, J., Gray, K. & Keane, R. (2006). Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements. Canadian Journal of Forest Research, 36, 2803–2814.
  • Rothermel, R. C. (1991). Predicting behavior and size of crown fires in the Northern Rocky Mountains. Res. Pap. INT-438. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 46.
  • Sakici, O. E., Kucuk, O. & Ashraf, M. I. (2018). Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.). Environmental Monitoring and Assessment, 190, 285.
  • Smith, D. M., Larson, B. M., Kelty, M. J., Ashton, P. M. S. (1996). Theory and practice of silviculture: applied forest ecology. 9th ed. New York. Wiley, 1996.
  • Scott, J. H. 1999. NEXUS: a system for assessing crown fire hazard. Fire Management Notes. 59(2), 20-24.
  • Sonmez, T., Kahriman, A., Şahin, A. & Yavuz, M. (2016). Biomass equations for Calabrian pine in the Mediterranean region of Turkey. Šumarski List, 11-12, 567–576.
  • Scott, J. H. & Reinhardt, E. D. (2002). Estimating canopy fuels in conifer forests. Fire Management Today, 62, 45−50.
  • Stocks, B. J. (1980). Black spruce crown fuel weights in northern Ontario. Canadian Journal of Forest Research, 17, 80-86.
  • Stocks, B. J. Alexander, M. E. Wotton, B. M. Stefner, C. N. Flannigan, M. D. Taylor, S. W. Lavoie, N. Mason, J. A. Hartley, G. R. Maffey, M. E. Dalrymple, G. N. Blake, T. W. Cruz, M. G. & Lanoville, R. A. (2004). Crown fire behaviour in a northern jack pine black spruce forest. Canadian Journal of Forest Research, 34, 1548–1560.
  • Sun, O., Uğurlu, S. & Özer, E. (1980). Kızılçam (Pinus brutia Ten.) türüne ait biyolojik kütlenin saptanması. Ormancılık Araştırma Enstitüsü Teknik Bülteni, Teknik Bülten Serisi No: 104, 32.
  • Taylor, S. W.;, Pike, R. G. &; Alexander, M. E. (1997). Field Guide to the Canadian Forest Fire Behavior Prediction (FBP) System, Technical Report 11, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta
  • Ter-Mikaelian, M. T. & Korzukhin, M. D. (1997). Biomass equations for sixtyfive North American tree species. Forest Ecology and Management. 97, 1–24.
  • Turner, M. G. & Romme, W. H. (1994). Landscape Dynamics in crown fire ecosystems. Landscape Ecology, 9(1), 59-77.
  • Van Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research. 7, 23–34.
  • Van Wagner, C. E. (1978). Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research, 8, 220-227.
  • Veblen, T. T. (2000). Disturbance patterns in southern Rocky Mountain forests. Pages 31–54 in Knight, R.L.; Smith F.W.; Buskirk, S.W; Romme, W.H; Baker, W.L. eds. Forest Fragmentation in the Southern Rocky Mountains. Boulder: University Press of Colorado.
  • Viegas, D. X. (2012). Extreme Fire Behaviour. In Forest Management: Technology, Practices and Impact; Bonilla Cruz, A.C., Guzman Correa, R.E., Eds.; Nova Science Publishers: New York, NY, USA, 1–56.
  • Weaver, H. (1943). Fire as an ecological and silvicultural factor in the ponderosa pine region of the Pacific Slope. Journal of Forestry, 41(1), 7–15.
  • Weaver, H. (1967). Fire and its relationship to ponderosa pine. In Proceedings Tall Timbers Fire Ecology Conference. 7, 127-149.
  • Werth, P. A., Potter, B. E., Clements, C. B., Finney, M. A., Goodrick, S. L., Alexander, M. E., Cruz, M. G., Forthofer, J. A. & McAllister, S. S. (2011). Synthesis of knowledge of extreme fire behavior: volume I for fire managers. Gen. Tech. Rep. PNW-GTR-854. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 144.
  • Zianis, D., Xanthopoulos, G., Kalabodikis, K., Kazakis, G., Ghosn, D. & Roussou, O. (2011). Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands Greece. European Journal of Forest Research, 130, 145-160.
There are 56 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

İsmail Baysal 0000-0001-6789-5345

Mehmet Yurtgan This is me 0000-0001-9101-2514

Ömer Küçük This is me 0000-0003-2639-8195

Nuray Öztürk This is me 0000-0001-5197-9253

Publication Date December 23, 2019
Published in Issue Year 2019 Volume: 19 Issue: 3

Cite

APA Baysal, İ., Yurtgan, M., Küçük, Ö., Öztürk, N. (2019). Estimation of Crown Fuel Load of Suppressed Trees in Non-treated Young Calabrian Pine (Pinus brutia Ten.) Plantation Areas. Kastamonu University Journal of Forestry Faculty, 19(3), 350-359. https://doi.org/10.17475/kastorman.662733
AMA Baysal İ, Yurtgan M, Küçük Ö, Öztürk N. Estimation of Crown Fuel Load of Suppressed Trees in Non-treated Young Calabrian Pine (Pinus brutia Ten.) Plantation Areas. Kastamonu University Journal of Forestry Faculty. December 2019;19(3):350-359. doi:10.17475/kastorman.662733
Chicago Baysal, İsmail, Mehmet Yurtgan, Ömer Küçük, and Nuray Öztürk. “Estimation of Crown Fuel Load of Suppressed Trees in Non-Treated Young Calabrian Pine (Pinus Brutia Ten.) Plantation Areas”. Kastamonu University Journal of Forestry Faculty 19, no. 3 (December 2019): 350-59. https://doi.org/10.17475/kastorman.662733.
EndNote Baysal İ, Yurtgan M, Küçük Ö, Öztürk N (December 1, 2019) Estimation of Crown Fuel Load of Suppressed Trees in Non-treated Young Calabrian Pine (Pinus brutia Ten.) Plantation Areas. Kastamonu University Journal of Forestry Faculty 19 3 350–359.
IEEE İ. Baysal, M. Yurtgan, Ö. Küçük, and N. Öztürk, “Estimation of Crown Fuel Load of Suppressed Trees in Non-treated Young Calabrian Pine (Pinus brutia Ten.) Plantation Areas”, Kastamonu University Journal of Forestry Faculty, vol. 19, no. 3, pp. 350–359, 2019, doi: 10.17475/kastorman.662733.
ISNAD Baysal, İsmail et al. “Estimation of Crown Fuel Load of Suppressed Trees in Non-Treated Young Calabrian Pine (Pinus Brutia Ten.) Plantation Areas”. Kastamonu University Journal of Forestry Faculty 19/3 (December 2019), 350-359. https://doi.org/10.17475/kastorman.662733.
JAMA Baysal İ, Yurtgan M, Küçük Ö, Öztürk N. Estimation of Crown Fuel Load of Suppressed Trees in Non-treated Young Calabrian Pine (Pinus brutia Ten.) Plantation Areas. Kastamonu University Journal of Forestry Faculty. 2019;19:350–359.
MLA Baysal, İsmail et al. “Estimation of Crown Fuel Load of Suppressed Trees in Non-Treated Young Calabrian Pine (Pinus Brutia Ten.) Plantation Areas”. Kastamonu University Journal of Forestry Faculty, vol. 19, no. 3, 2019, pp. 350-9, doi:10.17475/kastorman.662733.
Vancouver Baysal İ, Yurtgan M, Küçük Ö, Öztürk N. Estimation of Crown Fuel Load of Suppressed Trees in Non-treated Young Calabrian Pine (Pinus brutia Ten.) Plantation Areas. Kastamonu University Journal of Forestry Faculty. 2019;19(3):350-9.

14178  14179       14165           14166           14167            14168