Experimental and Computational Vibration Study of Amino Acids

Article Preview

Abstract:

Vibrational studies of amino acids experimentally and theoretically have been performed. The Semi-empirical methods optimization by PM6 and RM1 on the l- and d-amino acids (alanine, phenylalanine, aspartic and glutamic acid), showed no difference in energy between l-and d-isomers. The vibrational frequencies were calculated by semi-emprical methods (PM6 and RM1) and Ab Initio methods (B3LYP/6-31+G(d) and were scaled down by factors of 0.925 (RM1), 1.09 (PM6) and 0.89 (B3LYP/6-31+G(d)). The calculated and experimental vibrational frequencies have shown good general agreement.

Info:

Pages:

1-17

Citation:

Online since:

June 2013

Export:

* - Corresponding Author

[1] Suenram, R. D., Lovas F. J., J. Mol. Spectrosc. 72 (1978) 372.

Google Scholar

[2] Suenram, R. D., Lovas F. G., J. Am. Chem. Soc. 102 (1980) 7180.

Google Scholar

[3] Iijima K., Tanaka K., Onuma S., J. Mol. Struct. 246 (1991) 257.

Google Scholar

[4] Iijima K., Beagley B., J. Mol. Struct. 248 (1991) 133.

Google Scholar

[5] Ding Y., Krogh-Jespersen K., Chem. Phys. Lett. 199 (1992) 261.

Google Scholar

[6] Sambrano J. R., de Sousa A. R., Queralt J. J., Andrès J., Longo E., Chem. Phys. Lett. 294 (1998) 1.

Google Scholar

[7] Császár A. G., J. Phys. Chem. 100 (1996) 3541.

Google Scholar

[8] Reva I. D., Plokhotnichenko A. M., Stepanian S. G., Ivanov A. Y., Radchenko E. D., Sheina G. G., Blagoi Y. P., Chem. Phys. Lett. 232 (1995) 141.

DOI: 10.1016/0009-2614(95)00190-f

Google Scholar

[9] Rosado M. T. S., Duarte M. L. R. S., Fausto R., J. Mol. Struct. 410(1997) 343.

Google Scholar

[10] Reva I. D., Plokhotnichenko A. M., Stepanian S. G., Ivanov A. Y., Radchenko E. D., Sheina G. G., Blagoi Y. P., J. Mol. Struct. 318 (1994) 1.

DOI: 10.1016/0022-2860(93)07907-e

Google Scholar

[11] Foreman J. B., Frisch Æ., Exploring Chemistry with Electronic Stucture Methods, Second Edition, Gaussian, Pittsburgh, PA, (1996) 237.

Google Scholar

[12] Foresman J. B., Private communication, November 3 (1996).

Google Scholar

[13] Jensen J. H., Gordon M. S., J. Am. Chem. Soc. 117 (1995) 8159.

Google Scholar

[14] Cao X., Fischer G., in: Proceedings of the 22nd Annual Meeting of Australian Society for Biophysics, The Australian National University, Canberra, December, 1998.

Google Scholar

[15] Cao X., Fischer G., Spectrochim. Acta Part A 55 (1999) 2329-2342.

Google Scholar

[16] Rosado M. T. S., Duarte M. L. R. S., Fausto R., J. Mol. Struct. 410/411 (1997) 343-348.

Google Scholar

[17] Stepanian S. G., Reva I. D., Radchenko E. D., Adamowicz L., J. Phys. Chem. A 102 (1998) 4623-4629.

Google Scholar

[18] Santosh K., Amareshwar K. R., Rai S. B., Rai D. K., Singh A. N., Singh V. B., J. Mol. Struct. 791 (2006) 23-25.

Google Scholar

[19] Lopez N. J. T., Hemandez V., Ramirez F. J., Biopolymers 34 (2004)(8) 1065-1077.

Google Scholar

[20] Cao X., Fischer G., J. Mol. Struct. 519 (2000) 153-163.

Google Scholar

[21] Mahalakshmi R., Jesuraja S. X., Terome D. S., Cryst.Res. Technol. 41(8) (2006) 780-783.

Google Scholar

[22] Ramirez F. J., Lopez J. T. N., Spectrochimica Acta. A 51(2) (1995) 293-302.

Google Scholar

[23] Lopez Navarrete J. T., Bencivenni L., Ramondo F., Hernandez V., Ramiraz F. J., J. Mol. Struct. 330 (1995) 261-266.

Google Scholar

[24] Ochterski J. W., Vibrational Analysis in Gaussian, Gaussian Inc. Pittshurg, PA, 2000.

Google Scholar

[25] Lee C., Yang W., Parr R. G., Phys. Rev. B 37 (1988) 785.

Google Scholar

[26] Barthes M., Vik A. F., Spire A., Bordallo H. N., Eckert J., J. Phys. Chem. A 106 (2002) 5230.

Google Scholar

[27] Otavio V. C., Claudio A. T. S., Tiago G., Judith, F., Spectrochimica Acta. A 61(2) (2005) 337-345. ( Received 11 May 2013; accepted 15 May 2013 )

Google Scholar