Mitigation of Salinity Stress Effects on Growth, Physio-Chemical Parameters and Yield of Snapbean (Phaseolus vulgaris L.) by Exogenous Application of Glycine Betaine

Article Preview

Abstract:

Pots experiment was carried out during season 2017 at greenhouse of the Agric. Bot. Dep., Fac. of Agric., Zagazig Univ., Egypt to evaluate the effect of glycine betaine (GB) application under salinity stress (50 and100 mM NaCl) on growth, physio-chemical analysis and yield of snap bean cv. Bronco. A complete randomized blocks design was used in this search with three replications. Growth parameters, chlorophyll content and green pod yield were significantly decreased with subjecting plants to NaCl. However foliar application of GB detoxified the stress generated by NaCl and significantly improved the above mention parameters. Salinity stress increased the electrolyte leakage (EL) and decreased membrane stability index (MSI) and relative water content (RWC). While foliar application of GB was improved MSI and RWC and minimized EL. Proline content and antioxidant enzymes significantly increased in the response to NaCl stress as well as GB application.

Info:

Pages:

60-71

Citation:

Online since:

August 2019

Export:

* - Corresponding Author

[1] R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239 250.

DOI: 10.1046/j.0016-8025.2001.00808.x

Google Scholar

[2] R. Mittler, Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci. 7 (2002) 405-410.

DOI: 10.1016/s1360-1385(02)02312-9

Google Scholar

[3] C.H. Foyer, G. Noctor, Oxygen processing in photosynthesis: A molecular approach, New Phytol. 146 (2000) 359–388.

Google Scholar

[4] H. Marschner, Mineral nutrition of higher plants, 2nd Ed., Academic Press, London, 1995.

Google Scholar

[5] M.M. Rady, Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress, Sci. Hortic. 129 (2011) 232–237.

DOI: 10.1016/j.scienta.2011.03.035

Google Scholar

[6] E.M. Desoky, A.M. Merwad, M.M. Rady, Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance, Communications in Soil Science and Plant Analysis. 49(8) (2018) 967–983.

DOI: 10.1080/00103624.2018.1448861

Google Scholar

[7] P. Sudhir, S.D.S. Murthy, Effect of salt stress on basic process of photosynthesis. Photosynthetica 42 (2004) 481-486.

DOI: 10.1007/s11099-005-0001-6

Google Scholar

[8] P.C. Bethke, M.C. Drew, Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity, Plant Physiol. 99 (1992) 219–226.

DOI: 10.1104/pp.99.1.219

Google Scholar

[9] S. Kahrizi, M. Sedghi, O. Sofalian, Effect of salt stress on proline and activity of antioxidant enzymes in ten durum wheat cultivars. Ann. Biol. Res. 3 (2012) 3870–3874.

Google Scholar

[10] D. Rhodes, A.D. Hanson, Quaternary ammonium and tertiary sulfonium compoundsin higher plants, Annu Rev Plant Physiol Plant Mol Biol. 44 (1993) 357–384.

DOI: 10.1146/annurev.pp.44.060193.002041

Google Scholar

[11] M.O.A. Rady et al., Up regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress, Scientia Horticulturae 240 (2018) 614–622.

DOI: 10.1016/j.scienta.2018.06.069

Google Scholar

[12] P.D. Hare, W.A. Cress, J. Van Staden, Dissecting the roles of osmolyte accumulation during stress. Plant, Cell Environ. 21(1998) 535–553.

DOI: 10.1046/j.1365-3040.1998.00309.x

Google Scholar

[13] A. Sakamoto, N. Murata, The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants, Plant Cell Environ. 25 (2002) 163–171.

DOI: 10.1046/j.0016-8025.2001.00790.x

Google Scholar

[14] F. Alasvandyari, B. Mahdavi, S. Hosseini Madah, Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity-induced damage in safflower seedlings, Arch. Biol. Sci. 69 (2017) 139–147.

DOI: 10.2298/abs160216089a

Google Scholar

[15] M.A.A. Gadallah, Effects of proline and glycinebetaine on Vicia faba responses to salt stress, Biol. Plant. 42 (1999) 249–257.

DOI: 10.1023/a:1002164719609

Google Scholar

[16] M.A. Hamdia, M.A.K. Shaddad, Salt tolerance of crop plants. J. Stress Physiol. Biochem. 6 (2010) 64–90.

Google Scholar

[17] X. Yang, C. Lu, Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants, Physiol. Plant. 124 (2005) 343–352.

DOI: 10.1111/j.1399-3054.2005.00518.x

Google Scholar

[18] C.M.L. Lopez, H. Takahashi, S. Yamazaki, Plant–water relations of kidney bean plants treated with NaCl and foliarly applied glycinebetaine, J. Agron. Crop Sci. 188 (2002) 73–80.

DOI: 10.1046/j.1439-037x.2002.00535.x

Google Scholar

[19] S.H. Raza,Athar, H.R. Ashraf, A. Hameed, Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ. Exp. Bot. 60 (2007) 368-376.

DOI: 10.1016/j.envexpbot.2006.12.009

Google Scholar

[20] M.M. Rady, V.C. Bhavya, S.M. Howladar, Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract, Sci. Hortic. 162 (2013) 63-70.

DOI: 10.1016/j.scienta.2013.07.046

Google Scholar

[21] E.V Maas, G.J. Hoffman, Crop salt tolerance. Current assessment, Journal of Irrigation and Drainage 103(1997) 115–134.

DOI: 10.1061/jrcea4.0001137

Google Scholar

[22] CIAT (Centro Internacional de Agricultura Tropical), Constraints to and opportunities for improving bean production. In: A planting document 1993–98 and achieving document (1992) 1987–92. CIAT, Cali. Colombia.

DOI: 10.17138/tgft(2)6-8

Google Scholar

[23] A.A. Fadeels, Location and properties of chloroplasts and pigment determination in roots, Physiol. Plant. 15 (1962) 130-147.

Google Scholar

[24] D. Von Wettstein, Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell. Res. 12 (1957) 427–506.

DOI: 10.1016/0014-4827(57)90165-9

Google Scholar

[25] R.L. Heath, L. Packer, Photoperoxidation isolated chloroplasts: kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochemistry and Biophysics 125 (1968) 189–198.

DOI: 10.1016/j.abb.2022.109248

Google Scholar

[26] L.S. Bates, R.P. Waldren, I.D. Teare, Rapid determination of free proline for water stress studies, Plant and Soil. 39 (1973) 205-207.

DOI: 10.1007/bf00018060

Google Scholar

[27] M.E. Jensen, Design and Operation of Farm Irrigation Systems. ASAE, Michigan, USA pp. (1983) 827.

Google Scholar

[28] C.Y. Sullivan, W.M. Ross, Selecting the drought and heat resistance in grain sorghum. In: H. Mussel, R.C. Staples (Eds.), Stress Physiology in Crop Plants. John Wiley & Sons, New York, 1979, p.263–281.

Google Scholar

[29] H.D. Barrs, P.E. Weatherley, A re-examination of the relative turgidity technique for estimating water deficits in leaves, Aust. J. Biol. Sci. 24 (1962) 519-570.

DOI: 10.1071/bi9620413

Google Scholar

[30] B. Wolf, A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status, Commun. Soil Sci. Plant Anal. 13 (1982) 1035-1059.

DOI: 10.1080/00103628209367332

Google Scholar

[31] M. Lachica, A. Aguilar, J. Yanez, Analisis foliar. Métodos utilizados en la Estacion Experimental del Zaidin. An. Edafol. Agrobiol. 32 (1973) 1033-1047.

Google Scholar

[32] H.D. Chapman, F.P. Pratt, Determination of Minerals by Titration Method: Methods of Analysis for Soils, Plants, and Water, 2nd ed. Agriculture Division, Calif. Univ., USA, (1982), p.169–170.

Google Scholar

[33] F.S. Watanabe, S.R. Olsen, Test of ascorbic acid method for determine phosphorus in water and NaHCO3 extracts from soil, Soil Sci. Soc. Am., Proc. 29 (1965) 677–678.

DOI: 10.2136/sssaj1965.03615995002900060025x

Google Scholar

[34] A.P. Vitoria, P.J. Lea, R.A. Azevado, Antioxidant enzymes responses to cadmium in radish tissues, Phytochem. 57 (2001) 701-710.

DOI: 10.1016/s0031-9422(01)00130-3

Google Scholar

[35] B. Chance, A. C. Maehly, Assay of catalase and peroxidase. Methods in enzymology. 2 (1955) 764-775.

Google Scholar

[36] R.L. Thomas, J.J. Jen, C.V. Morr, Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development, J. Food Sci. 47(1982) 158-161.

DOI: 10.1111/j.1365-2621.1982.tb11048.x

Google Scholar

[37] J.L. Fielding, J.L. Hall, A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum, J. Expt. Bot. 29 (1978) 969-981.

DOI: 10.1093/jxb/29.4.969

Google Scholar

[38] R.K. Sairam, K.V. Rao, G.C. Srivastava, Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration, Plant Sci. 163 (2002) 1037-1046.

DOI: 10.1016/s0168-9452(02)00278-9

Google Scholar

[39] R. Munns, M. Tester, Mechanism of salinity tolerance, Annu Rev Plant Biol. 59 (2008) 651–681.

DOI: 10.1146/annurev.arplant.59.032607.092911

Google Scholar

[40] P.M. Hasegawa et al., Plant cellular and molecular responses to high salinity, Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 (2000) 463-499.

Google Scholar

[41] N.A.K.K. Sima et al., Genotype-dependent differential responses of three forage species to calcium supplement in saline conditions, J. Plant Nutr. 32 (2009) 579–597.

DOI: 10.1080/01904160802714979

Google Scholar

[42] A.A. Rodriguez et al., Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity, J. Expt. Bot. 55 (2004) 1383-1390.

DOI: 10.1093/jxb/erh148

Google Scholar

[43] M. Ashraf, M.R. Foolad, Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ Exp. Bot. 59 (2007) 206-216.

DOI: 10.1016/j.envexpbot.2005.12.006

Google Scholar

[44] J.K. Zhu, Plant salt tolerance, Trends Plant Sci. 6 (2001) 66-71.

Google Scholar

[45] A.K. Parida, A.B. Das, Salt tolerance and salinity effects on plants: a review, Ecotox. Environ. Safe. 60 (2005) 324-349.

Google Scholar

[46] E.M. Desoky, A.M. Merwad, A.S. Elrys, Response of Pea Plants to Natural Bio-stimulants Under Soil Salinity Stres. Am. J. Plant physiol. 12(1) (2017) 28-37.

Google Scholar

[47] E.M. Desoky, A.S. Elrys, M.M. Rady, Integrative moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metalscontaminated saline soil, Ecotoxicology and Environmental Safety. 169 (2019) 50–60.

DOI: 10.1016/j.ecoenv.2018.10.117

Google Scholar

[48] P.C. Agboma et al., Effect of foliar application of glycine betaine on yield of drought-stressed tobacco plant, Exp. Agric. 33(1997) 345-352.

DOI: 10.1017/s0014479797003062

Google Scholar

[49] N. Iqbal, M. Y. Ashraf, M. Ashraf, Influence of water stress and exogenous glycine betaine on sunflower achene weight and oil percentage, Int. J Environ. Sci. Technol. 2 (2005) 155-160.

DOI: 10.1007/bf03325870

Google Scholar

[50] T. Demiral, I. Turkan, Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress, Environ. Exp. Bot. 56 (2006) 72–79.

DOI: 10.1016/j.envexpbot.2005.01.005

Google Scholar

[51] P. Mäkelä, J. Kärkkäinen, S. Somersalo, Effect of glycine betaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity, Biol. Plant. 43 (2000) 471-475.

DOI: 10.1023/a:1026712426180

Google Scholar

[52] S.N. Mishra, I. Sharma, Putrescine as a growth inducer and as a source of nitrogen for mustard seedlings under sodium chloride salinity, Indian J. Expt. Physiol. 32 (1994) 916-918.

Google Scholar

[53] M.A. Shaddad et al., Response of seeds of Lupinus termis and Vicia faba to the interactive effect of salinity and ascorbic acid or pyridoxine, Plant Soil 122 (1990) 177-183.

DOI: 10.1007/bf02851972

Google Scholar

[54] K. Shetty et al., Stimulation of benzyladenine-induced in vitro shoot organogenesis in Cucumus melo L. by proline, salicylic acid and aspirin, Plant Sci. 84 (1992) 193-199.

DOI: 10.1016/0168-9452(92)90134-8

Google Scholar

[55] J.A. Hernández, M.S. Almansa, Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves, Physiol. Plantarum 115 (2002) 251-257.

DOI: 10.1034/j.1399-3054.2002.1150211.x

Google Scholar

[56] D.J. Allen et al., Analysis of the limitation to CO2 assimilation to exposure of leaves of two Brassica napus cultivars to UV-B, Plant Cell Environ. 20 (1997) 633-640.

DOI: 10.1111/j.1365-3040.1997.00093.x

Google Scholar

[57] M.A. Hoque et al., Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells, J. Plant Physiol. 164 (2007) 1457-1468.

DOI: 10.1016/j.jplph.2006.10.004

Google Scholar

[58] D.A. Meloni, C.A. Martınez, Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings, Braz. J. Plant Physiol. 21 (2009) 233–241.

DOI: 10.1590/s1677-04202009000300007

Google Scholar

[59] K.R. Chandrasekhar, S. Sandhyarani, Salinity induced chemical changes in Crotalaria striata DC plants, Indian J. Plant Physiol. 1 (1996) 44-48.

Google Scholar

[60] B. Heuer, Influence of exogenous application of proline and glycineb etaine on growth of salt-stressed tomato plants, Plant Sci.165 (2003) 693–699.

DOI: 10.1016/s0168-9452(03)00222-x

Google Scholar

[61] P.B.K. Kishor et al., Review: regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance, Curr. Sci. 88 (2005) 424-438.

Google Scholar

[62] S.M. Howladar, A novel Moringa oleifera leaf extract can mitigate the stress effect of salinity and cadmium in bean (Phaseolus vulgaris L.) plants, Ecotoxicology and Environmental Safety. 100 (2014) 69-75.

DOI: 10.1016/j.ecoenv.2013.11.022

Google Scholar

[63] P. Stępień, G. Kłobus, Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress, Biol. Plant. 50 (2006) 610-616.

DOI: 10.1007/s10535-006-0096-z

Google Scholar

[64] J.T. Prisco, Alguns aspectos da fisiologia do estresse salino. Revista Brasileira de Botânica 3 (1980) 85-94.

Google Scholar

[65] S. Trapp et al., A phytotoxicity test using transpiration of willows, Arch. Environ. Contam. Toxicol. 39 (2000) 154-160.

Google Scholar

[66] S. Trapp et al., Plant uptake of NaCl in relation to enzyme kinetics and toxic effects, Environ. Exp. Bot. 64 (2008) 1–7.

Google Scholar

[67] P.K. Wahome, Mechanisms of salt stress tolerance in two rose rootstocks, Rosa chinensis 'Major' and R. rubiginosa, Sciencia Horticulturae. 87 (2001) 207-216.

DOI: 10.1016/s0304-4238(00)00168-0

Google Scholar

[68] M. Tester, R. Davenport, Na+ tolerance and Na+ transport in higher plants, Ann. Bot. 91 (2003) 503-527.

DOI: 10.1093/aob/mcg058

Google Scholar

[69] E. Epstein, A.J. Bloom, Mineral Nutrition of Plants, Principles and Perspectives. 2nd Edn. Sunderland, MA. Sinauer Associates, 2005.

Google Scholar

[70] S.R. Grattan, C.M. Grieve, Mineral nutrient acquisition and response of plants grown in saline environments, in: M. Pessarakli (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker Press Inc., New York, 1999, pp.203-229.

DOI: 10.1201/9780824746728.ch9

Google Scholar

[71] G.R. Cramer, E. Epstein, A. Läuchli, Effects of sodium, potassium and calcium on salt-stressed barley. 2. Elemental analysis. Physiologia Plantarum. 81 (1991) 197–202.

DOI: 10.1034/j.1399-3054.1991.810208.x

Google Scholar

[72] N. Shabala, L. Shabala, E. Van Volkenburgh, Effect of calcium on root development and root ion fluxes in salinised barley seedlings, Funct. Plant Biol. 30 (2003) 507-514.

DOI: 10.1071/fp03016

Google Scholar

[73] T.A. Cuin et al., Potassium activities in cell compartments of salt-grown barley leaves. J. Expt. Bot. 54 (2003) 657–661.

DOI: 10.1093/jxb/erg072

Google Scholar

[74] I. Gómez et al., Salinity and nitrogen fertilization affecting the macronutrient content and yield of sweet pepper plants, J. Plant Nutr. 19 (1996) 353-359.

DOI: 10.1080/01904169609365126

Google Scholar

[75] M.A. Sobahan et al., Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na+ uptake in rice seedlings, Biosci. Biotechnol. Biochem. 73 (2009) 2037-2042.

DOI: 10.1271/bbb.90244

Google Scholar

[76] S. Rahman, H. Miyake, Y. Takeoka, Effects of exogenous glycine betaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.), Plant Prod. Sci. 5 (2002) 33-44.

DOI: 10.1626/pps.5.33

Google Scholar

[77] T.A. Cuin, S. Shabala, Potassium efflux channels mediate arabidopsis root responses to reactive oxygen species and the mitigating effect of compatible solutes, Plant Cell Environ. 7 (2007) 875-885.

DOI: 10.1111/j.1365-3040.2007.01674.x

Google Scholar

[78] M.A. Hoque et al., Exogenous proline mitigates the detrimental effects of salt stress more than exogenous glycine betaine by increasing antioxidant enzyme activities, J. Plant Physiol. 164 (2007) 553-561.

DOI: 10.1016/j.jplph.2006.03.010

Google Scholar

[79] K. Nawaz, M. Ashraf, Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress, J. Agron. Crop Sci. 196 (2010) 28–37.

DOI: 10.1111/j.1439-037x.2009.00385.x

Google Scholar

[80] A. Parvaiz, S. Satyawati, Salt stress and phyto-biochemical responses of plants A review, Plant Soil Environ. 54 (2008) 89–99.

DOI: 10.17221/2774-pse

Google Scholar

[81] M. Hasanuzzaman et al., Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties, Biomed. Res. Int. 2014.

DOI: 10.1155/2014/757219

Google Scholar

[82] T.H.H. Chen, N. Murata, Glycinebetaine: an effective protectant against abiotic stress in plants, Trends Plant Sci. 13 (2008) 499–505.

DOI: 10.1016/j.tplants.2008.06.007

Google Scholar

[83] T. Demiral, I. Türkan, Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161 (2004) 1089–1100.

DOI: 10.1016/j.jplph.2004.03.009

Google Scholar