AccScience Publishing / IJB / Volume 2 / Issue 2 / DOI: 10.18063/IJB.2016.02.006
Cite this article
10
Download
544
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Bioprinting in cardiovascular tissue engineering: a review

Jia Min Lee1,2 Swee Leong Sing1,2 Edgar Yong Sheng Tan1,2 Wai Yee Yeong1,2*
Show Less
1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
2 Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue 639798, Singapore
Published: 24 July 2016
© 2016 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Fabrication techniques for cardiac tissue engineering have been evolving around scaffold-based and scaffold-free approaches. Conventional fabrication approaches lack control over scalability and homogeneous cell distribution. Bioprinting provides a technological platform for controlled deposition of biomaterials, cells, and biological factors in an organized fashion. Bioprinting is capable of alternating heterogeneous cell printing, printing anatomical relevant structure and microchannels resembling vasculature network. These are essential features of an engineered cardiac tissue. Bioprinting can potentially build engineered cardiac construct that resembles native tissue across macro to nanoscale.

Keywords
Bioprinting
3D printing
tissue engineering
cardiovascular tissue
scaffolds
References

1. Braunwald E, 2013, Heart failure. JACC: Heart Failure, vol.1(1): 1–20. http://dx.doi.org/10.1016/j.jchf.2012.10.002 
2. Go A S, Mozaffarian D, Roger V L, et al., 2014, Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation, vol.129: e28–e292. http://dx.doi.org/10.1161/01.cir.0000441139.02102.80 
3. Adler C P, Friedburg H, Herget G W, et al., 1996, Varia-bility of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Archiv, vol.429: 159–164. http://dx.doi.org/10.1007/bf00192438 
4. Laflamme M A and Murry C E, 2011, Heart regenera-tion. Nature, vol.473: 326–335. http://dx.doi.org/10.1038/nature10147 
5. Hunter P, 2009, Cardiovascular mechanics, in Binder M, Hirokawa N and Windhorst U (eds), Encyclopedia of Neuroscience, Springer, Berlin Heidelberg, 564–567. http://dx.doi.org/10.1007/978-3-540-29678-2_824 
6. Ferreira F P, Kilner P J, McGill L A, et al., In vivo car-diovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, vol.16(87). http://dx.doi.org/10.1186/s12968-014-0087-8 
7. Tillman B, Hardin-Young J, Shannon W, et al., 2013, Meeting the need for regenerative therapies: translation-focused analysis of U.S. regenerative medicine op-portunities in cardiovascular and peripheral vascular medicine using detailed incidence data. Tissue Engi-neering Part B: Reviews, vol.19(2): 99–115. http://dx.doi.org/10.1089/ten.teb.2011.0678 
8. Makkar R R, Smith R R, Cheng K, et al., 2012, Intra-coronary cardiosphere-derived cells for heart regenera-ion after myocardial infarction (CADUCEUS): A pros-pective, randomised phase 1 trial. The Lancet, vol.379(9819): 895–904. http://dx.doi.org/10.1016/S0140-6736(12)60195-0 
9. Bolli R, Chugh A R, D'Amario D, et al., 2011, Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, vol.378(9806): 1847–1857. http://dx.doi.org/10.1016/S0140-6736(11)61590-0 
10. Lin Y D, Yeh M L, Yang Y J, et al., 2010, Intramyocar-dial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation, vol.122: S132–S141. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.939512 
11. Malliaras K, Makkar R R, Smith R R, et al., 2014, Intracoronary cardiosphere-derived cells after myocar-dial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CAr-diosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). Journal of the American Col-lege of Cardiology, vol.63(2): 110–122. http://dx.doi.org/10.1016/j.jacc.2013.08.724 
12. Bolli R, Chugh A R, D'Amario D, et al., 2011, Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. The Lancet, vol.378(9806): 1847–1857. http://dx.doi.org/10.1016/S0140-6736(11)61590-0 
13. Cheng K, Blusztajn A, Shen D, et al., 2012, Functional performance of human cardiosphere-derived cells deli-vered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials, vol.33(21): 5317–5324. http://dx.doi.org/10.1016/j.biomaterials.2012.04.006 
14. Wiria F E, Leong K F, Chua C K, et al., 2007, Poly- ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, vol.3(1): 1–12. http://dx.doi.org/10.1016/j.actbio.2006.07.008 
15. Langer R and Vacanti J P, 1993, Tissue engineering. Science, vol.260(5510): 920–926. http://dx.doi.org/10.1126/science.8493529 
16. Yeong W Y, Chua C K, Leong K F, et al., 2004, Rapid 
prototyping in tissue engineering: challenges and poten-tial. Trends in Biotechnology, vol.22(12): 643–652. http://dx.doi.org/10.1016/j.tibtech.2004.10.004 
17. Tillman B, Hardin-Young J, Shannon W, et al., 2013, Meeting the need for regenerative therapies: transla-tion-focused analysis of U.S. regenerative medicine op-portunities in cardiovascular and peripheral vascular medicine using detailed incidence data. Tissue Engi-neering Part B: Reviews, vol.19(2): 99–115. http://dx.doi.org/10.1089/ten.teb.2011.0678 
18. Sing S L, An J, Yeong W Y, et al., 2016, Laser and elec-tron-beam powder-bed additive manufacturing of metal-lic implants: a review on processes, materials and de-signs. Journal of Orthopaedic Research, vol.34(3): 369–385. http://dx.doi.org/10.1002/jor.23075 
19. Sing S L, Yeong W Y, Wiria F E, et al., 2016, Characte-rization of titanium lattice structures fabricated by selec-tive laser melting using an adapted compressive test method. Experimental Mechanics, vol.56(5): 735–748. http://dx.doi.org/10.1007/s11340-015-0117-y 
20. Yeong W Y, Sudarmadji N, Yu H Y, et al., 2010, Porous polycaprolactone scaffold for cardia tissue engineering fabricated by selective laser sintering. Acta Biomateria-lia, vol.6(6): 2028–2034. http://dx.doi.org/10.1016/j.actbio.2009.12.033 
21. Jawad H, Ali N N, Lyon A R, et al., 2007, Myocardial tissue engineering: a review. Journal of Tissue Engi-neering and Regenerative Medicine, vol.1(5): 327–342. http://dx.doi.org/10.1002/term.46 
22. Iyer R K, Chiu L L, Reis L A, et al., 2011, Engineered cardiac tissues. Current Opinion in Biotechnology, vol.22(5): 706–714. http://dx.doi.org/10.1016/j.copbio.2011.04.004 
23. Kohl P, Camelliti P, Burton F L, et al., 2005, Electrical coupling of fibroblasts and myocytes: relevance for car-diac propagation. Journal of Electrocardiology, vol.38(4): 45–50. http://dx.doi.org/10.1016/j.jelectrocard.2005.06.096 
24. Camelliti P, Green C R, LeGrice I, et al., 2004, Fibrob-last network in rabbit sinoatrial node: structural and functional identification of homogeneous and heteroge-neous cell coupling. Circulation Research, vol.94: 828–835. http://dx.doi.org/10.1161/01.RES.0000122382.19400.14 
25. Hirsch E, Nagai R and Thum T, 2014, Heterocellular signalling and crosstalk in the heart in ischaemia and heart failure. Cardiovascular Research, vol.102(2): 191–193. http://dx.doi.org/10.1093/cvr/cvu073 
26. Nakatani S, 2011, Left ventricular rotation and twist: why should we learn? Journal of Cardiovascular Ul-trasound, vol.19(1): 1–6. http://dx.doi.org/10.4250/jcu.2011.19.1.1
27. Vunjak-Novakovic G, Lui K O, Tandon N, et al., 2011, Bioengineering heart muscle: a paradigm for regenera-tive medicine. Annual Review of Biomedical Engineer-ing, vol.13: 245–267. http://dx.doi.org/10.1146/annurev-bioeng-071910-124701 
28. LeBlon C E, Pai R, Fodor C R, et al., 2013, In vitro comparative biodegradation analysis of salt-leached porous polymer scaffolds. Journal of Applied Polymer Science, vol.128(5): 2701–2712. http://dx.doi.org/10.1002/app.38321 
29. Sin D, Miao X G, Liu G, et al., 2010, Polyurethane (PU) scaffolds prepared by solvent casting/particulate leach-ing (SCPL) combined with centrifugation. Materials Science & Engineering C: Materials for Biological Applications, vol.30(1): 78–85. http://dx.doi.org/10.1016/j.msec.2009.09.002 
30. Pego A P, Siebum B, Van Luyn M J A, et al., 2003, Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)poly-mers for heart tissue engineering. Tissue Engineering, vol.9(5): 981–994. http://dx.doi.org/10.1089/107632703322495628 
31. Neal R A, Jean A, Park H, et al., 2013, Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features. Tissue Engineering Part A, vol.19(5-6): 793–807. http://dx.doi.org/10.1089/ten.tea.2012.0330 
32. Kharaziha M, Nikkhah M, Shin S R, et al., 2013, PGS: Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials, vol.34(27): 6355–6366. http://dx.doi.org/10.1016/j.biomaterials.2013.04.045 
33. Orlova Y, Magome N, Liu L, et al., 2011, Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials, vol.32(24): 5615– 5624. http://dx.doi.org/10.1016/j.biomaterials.2011.04.042 
34. Xu B, Li Y, Fang X, et al., 2013, Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. Journal of the Mechanical Behavior of Biomedical Materials, vol.28: 354–365. http://dx.doi.org/10.1016/j.jmbbm.2013.06.005 
35. Prabhakaran M P, Nair A S, Kai D, et al., 2012, Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering. Biopolymers, vol.97(7): 529–538. http://dx.doi.org/10.1002/bip.22035 
36. Kai D, Prabhakaran M P, Jin G, et al., 2011, Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.98(2): 379–386. http://dx.doi.org/10.1002/jbm.b.31862 
37. Shevach M, Maoz B M, Feiner R, et al., 2013, Nanoengineering gold particle composite fibers for cardiac tissue engineering. Journal of Materials Chemistry B, vol.1(39): 5210–5217. http://dx.doi.org/10.1039/c3tb20584c 
38. Fleischer S, Feiner R, Shapira A, et al., 2013, Spring-like fibers for cardiac tissue engineering. Biomaterials, vol.34(34): 8599-8606. http://dx.doi.org/10.1016/j.biomaterials.2013.07.054 
39. Engelmayr G C Jr, Cheng M, Bettinger C J, et al., 2008, Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, vol.7: 1003–1010. http://dx.doi.org/10.1038/nmat2316 
40. Zhang D, Shadrin I Y, Lam J, et al., 2013, Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials, vol.34(23): 5813–5820. http://dx.doi.org/10.1016/j.biomaterials.2013.04.026 
41. Zimmermann W H, Fink C, Kralisch D, et al., 2000, Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnology and Bioengineering, vol.68(1): 106–114. http://dx.doi.org/10.1002/(SICI)1097-0290(20000405)68:1%3C106::AID-BIT13%3E3.0.CO;2-3 
42. Zimmermann W H, Melnychenko I, Wasmeier G, et al., 2006, Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Natural Medicine, vol.12: 452–458. http://dx.doi.org/10.1038/nm1394 
43. Dvir T, Timko B P, Brigham M D, et al., 2011, Nano-wired three-dimensional cardiac patches. Nature Nanotechnology, vol.6: 720–725. http://dx.doi.org/10.1038/nnano.2011.160 
44. Dohmen P M, Scheckel M, Stein-Konertz M, et al., 2002, In vitro hydrodynamics of a decellularized pulmonary porcine valve, compared with a glutaraldehyde and polyurethane heart valve. International Journal of Artificial Organs, vol.25: 1089–1094. 
45. Juthier F, Vincentelli A, Gaudric J, et al., 2006, Decellularized heart valve as a scaffold for in vivo recellularization: deleterious effects of granulocyte colony-stimulating factor. Journal of Thoracic and Cardiovascular Surgery, vol.131(4): 843–852. http://dx.doi.org/10.1016/j.jtcvs.2005.11.037 
46. Ott H C, Matthiesen T S, Goh S K, et al., 2008, Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine, vol.14: 213–221. http://dx.doi.org/10.1038/nm1684 
47. Song J J and Ott H C, 2011, Organ engineering based on decellularized matrix scaffolds. Trends in Molecular Medicine, vol.17(8): 424–432. http://dx.doi.org/10.1016/j.molmed.2011.03.005 
48. Li Z and Guan J, 2011, Hydrogels for cardiac tissue engineering. Polymers, vol.3(2): 740–761. http://dx.doi.org/10.3390/polym3020740 
49. Chua C K, Yeong W Y and Leong K F, 2005, Rapid prototyping in tissue engineering: a state-of-the-art re-port, in Virtual Modelling and Rapid Manufacturing: Advanced Research in Virtual and Rapid Prototyping. Proceedings of the 2nd International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 28 September–1 October, 2005, 19–27. 
50. Yeong W Y, Chua C K and Leong K F, et al., 2005, Development of scaffolds for tissue engineering using a 3D inkjet model maker, in Virtual Modelling and Rapid Manufacturing: Advanced Research in Virtual and Rapid Prototyping. Proceedings of the 2nd International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 28 September–1 October, 2005, 115–118. 
51. Shimizu T, 2014, Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues. Circulation Journal, vol.78(11): 2594–2603. http://doi.org/10.1253/circj.CJ-14-0973 
52. Yasui H, Lee J K, Yoshida A, et al., 2014, Excitation propagation in three-dimensional engineered hearts using decellularized extracellular matrix. Biomaterials, vol.35(27): 7839–7850. http://dx.doi.org/10.1016/j.biomaterials.2014.05.080 
53. Shimizu T, Yamato M, Kikuchi A, et al., 2003, Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, vol.24(13): 2309–2316. http://dx.doi.org/10.1016/S0142-9612(03)00110-8 
54. Hata H, Bar A, Dorfman S, et al., 2010, Engineering a novel three-dimensional contractile myocardial patch with cell sheets and decellularised matrix. European Journal of Cardio-Thoracic Surgery, vol.38(4): 450–455. http://dx.doi.org/10.1016/j.ejcts.2010.02.009 
55. Miki K, Uenaka H, Saito A, et al., 2012, Bioengineered myocardium derived from induced pluripotent stem cells improves cardiac function and attenuates cardiac remodeling following chronic myocardial infarction in rats. Stem Cells Translational Medicine, vol.1(5): 430– 437. http://dx.doi.org/10.5966/sctm.2011-0038 
56. Hasegawa A, Haraguchi Y, Shimizu T, et al., 2015, Rapid fabrication system for three-dimensional tissues using cell sheet engineering and centrifugation. Journal of Biomedical Materials Research Part A, vol.103(12): 3825–3833. http://dx.doi.org/10.1002/jbm.a.35526 
57. Sakaguchi K, Shimizu T, Horaguchi S, et al., 2013, In Vitro engineering of vascularized tissue surrogates. Scientific Reports, vol.3: 1316. http://dx.doi.org/10.1038/srep01316 
58. Guillemot F, Mironov V and Nakamura M, 2010, Bio-printing is coming of age: report from the International 
Conference on Bioprinting and Biofabrication in Bor-deaux (3B'09). Biofabrication, vol.2(1): 010201. http://dx.doi.org/10.1088/1758-5082/2/1/010201 
59. Ozbolat I T and Hospodiuk M, 2016, Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, vol.76: 321–343. http://dx.doi.org/10.1016/j.biomaterials.2015.10.076 
60. Xu T, Zhao W, Zhu J M, et al., 2013, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, vol.34(1): 130–139. http://dx.doi.org/10.1016/j.biomaterials.2012.09.035 
61. Guillemot F, Guillotin B, Fontaine A, et al., 2011, Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bulletin, vol.36(12): 1015– 1019. http://dx.doi.org/10.1557/mrs.2011.272 
62. Lee H, Ahn S, Bonassar L J, et al., 2013, Cell-laden poly(varepsilon-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Engineering Part C: Methods, vol.19(10): 784– 793. http://dx.doi.org/10.1089/ten.tec.2012.0651 
63. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, vol.35(1): 49–62. http://dx.doi.org/10.1016/j.biomaterials.2013.09.078 
64. Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research: Part A, vol.101(5): 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420 
65. Fedorovich N E, Wijnberg H M, Dhert W J et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Engineering Part A, vol.17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.TEA.2011.0019 
66. Huang Y, He K and Wang X, 2013, Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Materials Science and Engineering: C. Materials for Biological Applications, vol.33(6): 3220–3229. http://dx.doi.org/10.1016/j.msec.2013.03.048 
67. Ozbolat I T, Chen H and Yu Y, 2014, Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robotics and Computer-Integrated Manufacturing, vol.30(3): 295–304. http://dx.doi.org/10.1016/j.rcim.2013.10.005 
68. Shim J M, Lee J S, Kim J Y, et al., 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. Journal of Micromechanics and Microengineering, vol.22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014 
69. Snyder J E, Hamid Q, Wang C, et al., 2011, Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication, vol.3(3): 034112. http://dx.doi.org/10.1088/1758-5082/3/3/034112 
70. Wang X H, Yan Y N, Pan Y Q, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Engineering, vol.12(1): 83–90. 
71. Skardal A, Zhang J and Prestwich G D, 2010, Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, vol.31(24): 6173–6181. http://dx.doi.org/10.1016/j.biomaterials.2010.04.045 
72. Visser J, Peters B, Burger T J, et al., 2013, Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, vol.5(3): 035007. http://dx.doi.org/10.1088/1758-5082/5/3/035007 
73. Lee W, Lee V, Polio S, et al., 2009, Three-dimensional cell-hydrogel printer using electromechanical micro-valve for tissue engineering. in TRANSDUCERS 2009 — 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2230–2233. http://dx.doi.org/10.1109/SENSOR.2009.5285591 
74. Gaetani R, Doevendans P A, Metz C H, J. et al., 2012, Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, vol.33(6): 1782–1790. http://dx.doi.org/10.1016/j.biomaterials.2011.11.003 
75. Kolesky D B, Truby R L, Gladman A S, et al., 2014, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, vol.26(19): 3124–3130. http://dx.doi.org/10.1002/adma.201305506 
76. Norotte C, Marga F S, Niklason L E, et al., 2009, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, vol.30(30): 5910–5917. http://dx.doi.org/10.1016/j.biomaterials.2009.06.034 
77. Hinton T J, Jallerat Q, Palchesko R N, et al., 2015, Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances, vol.1: e1500758. http://dx.doi.org/10.1126/sciadv.1500758 
78. Gaebel R, Ma N, Liu J, et al., 2011, Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, vol.32(35): 9218– 9230. 
http://dx.doi.org/10.1016/j.biomaterials.2011.08.071 
79. Xu T, Baicu C, Aho M, et al., 2009, Fabrication and characterization of bio-engineered cardiac pseudo tis-sues. Biofabrication, vol.1(3): 035001. http://dx.doi.org/10.1088/1758-5082/1/3/035001 
80. Vunjak-Novakovic G, Eschenhagen T and Mummery C, 2014, Myocardial tissue engineering: in vitro models. Cold Spring Harbor Perspectives in Medicine, vol.4.(3): a014076. http://dx.doi.org/10.1101/cshperspect.a014076 
81. Chanthakulchan A, Koomsap P, Parkhi A A, et al., 2015, Environmental effects in fibre fabrication using electrospinning-based rapid prototyping. Virtual and Physical Prototyping, vol.10(4): 227–237. http://dx.doi.org/10.1080/17452759.2015.1112411 
82. Sooppan R, Paulsen S J, Han J, et al., 2016, In vivo anastomosis and perfusion of a three-dimensionally-printed construct containing microchannel networks. Tissue Engineering Part C: Methods, vol.22(1): 1–7. http://dx.doi.org/10.1089/ten.TEC.2015.0239 
83. Liu L B and Wang X H, 2015, Creation of a vascular system for organ manufacturing. International Journal of Bioprinting, vol.1(1): 77–86. http://dx.doi.org/10.18063/IJB.2015.01.009 
84. Dvir T, Timko B P, Brigham M D, et al., 2011, Nano-wired three-dimensional cardiac patches. Nature Nanotechnology, vol.6(11): 720–725. http://dx.doi.org/10.1038/nnano.2011.160 
85. Xu L, Gutbrod S R, Bonifas A P, et al., 2014, 3D multi-functional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Communications, vol.5: 3329. http://dx.doi.org/10.1038/ncomms4329 
86. Wang S, Lee J M and Yeong W Y, 2015, Smart hydrogels for 3D bioprinting. International Journal of Bioprinting, vol.1(1): 3–14. http://dx.doi.org/10.18063/IJB.2015.01.005 
87. Dixon J E, Shah D A, Rogers C, et al., 2014, Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proceedings of the National Academy of Sciences, vol.111(15): 5580–5585. http://dx.doi.org/10.1073/pnas.1319685111 
88. Lee H Y, Kim H W, Lee J H, et al., 2015, Controlling oxygen release from hollow microparticles for pro-longed cell survival under hypoxic environment. Biomaterials, vol.53: 583–591. http://dx.doi.org/10.1016/j.biomaterials.2015.02.117 
89. Farris A L, Rindone A N, Grayson W L, 2016, Oxygen delivering biomaterials for tissue engineering. Journal of Materials Chemistry B, vol.4(20): 3422–3432. http://dx.doi.org/10.1039/C5TB02635K

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing