LIPASE INHIBITORS FROM NIGELLA SATIVA AND PUNICA GRANATUM AS AN EFFECTIVE APPROACH TOWARDS CONTROLLING OBESITY

Authors

  • Trichur Khabeer Shamsiya CSIR − Central Food Technological Research Institute (CFTRI), Mysore– 570 020, Karnataka, India, Food Protestants & Infestation Control Department
  • Manjunatha, J. R CSIR − Central Food Technological Research Institute (CFTRI), Mysore – 570 020, Karnataka, India Department of Spice & Flavour Science
  • Manonmani H.K CSIR − Central Food Technological Research Institute (CFTRI), Mysore – 570 020, Karnataka, India, Food Protestants & Infestation Control Department

DOI:

https://doi.org/10.20319/lijhls.2016.22.0119

Keywords:

Lipase Inhibitor, Nigella Saliva, Punica Granatum, Pancreatic Lipase Inhibitor, Hormone Sensitive Lipase Inhibitor, Anti-Obesity

Abstract

Two distinct lipase inhibitor cocktails RAYstat4ns and SHAMstat3pg have been purified from seeds of Nigella sativa and Punica granatum respectively. Structural characterization has shown RAYstat4ns to be a mixture of 3 polyunsaturated fatty acids and one saturated fatty acid while SHAMstat3pg is a triglyceride mixture comprising of three different kinds of polyunsaturated fatty acids. Ethanol extracted fractions of seeds of Nigella saliva and Punic a granatum having high lipase inhibitory activity were purified by HPLC followed by TLC to yield respectively RAYstat4ns and SHAMstat3pg . These plant based lipase inhibitors have shown good lipase inhibitory activity against pancreatic lipase with mixed type of inhibition. RAYstat4ns and SHAMstat3pg have also shown inhibition of hormone sensitive lipase. The experimental IC50 of the purified lipase inhibitors RAYstat4ns and SHAMstat3pg was found to be respectively 4.02μg/μl and 7.35 μg/μl for pancreatic lipase and 6.31 μg/μl and 11.45 μg/μl respectively for hormone sensitive lipase. Hence ,these plant-based lipase inhibitors can be used in controlling lipolysis and insulin resistance in addition to inhibiting absorption of dietary lipid into the living system. In vivo studies could help confirm the potency of these plant based isolates as efficient lipase inhibitors. 

References

Adnyana, I. K., Sukandar, E. Y., Yuniarto, a R. I., & Finna, S. (2014). Innovare Academic Sciences ANTI-OBESITY EFFECT OF THE POMEGRANATE LEAVES ETHANOL EXTRACT ( PUNICAGRANATUM L.) IN HIGH-FAT DIET INDUCED MICE, 6(4), 4–9.Andlauer, W., Prunier, P., & Prim, D. (2009). Fluorometric Method to Assess Lipase Inhibition Activity. CHIMIA International Journal for Chemistry, 63(10), 695–697. http://doi.org/10.2533/chimia.2009.695

Anthonsen, M. W., Ronnstrand, L., Wernstedt, C., Degerman, E., & Holm, C. (1998). Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem, 273(1), 215–221. http://dx.doi.org/10.1074/jbc.273.1.215

Barma, K. S., & Goswami, B. C (2013). Identification and estimation of fatty acids in fresh water fish Anabus testudineous, 4(11), 18–24.

Bustanji, Y., Issa, A., Mohammad, M., Hudaib, M., Tawah, K., Alkhatib, H., Al-Khalidi, B. (2010). Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. Journal of Medicinal Plants Research, 4(2), 2235–2242. http://doi.org/10.5897/JMPR10.399

Claus, T. H., Lowe, D. B., Liang, Y., Salhanick, A. I., Lubeski, C. K., Yang, L., … Clairmont, K. B. (2005). Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose. The Journal of Pharmacology and Experimental Therapeutics, 315(3), 1396–1402. http://dx.doi.org/10.1124/jpet.105.086926

Haslam, D. W., & James, W. P. T. (2005). Obesity Lancet, 366(9492), 1197–1209. http://doi.org/10.1016/S0140-6736(05)67483-1

Heimann, E., Nyman, M., & Degerman, E. (2014). Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte, 4(2), 81–8. http://dx.doi.org/10.4161/21623945.2014.960694

Kaplan, M., Hayek, T., Raz, a, Coleman, R., Dornfeld, L., Vaya, J., & Aviram, M. (2001). Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. The Journal of Nutrition, 131(8), 2082–2089. http://doi.org/PMID: 11481398

Lau, D. C. W., Douketis, J. D., Morrison, K. M., Hramiak, I. M., Sharma, A. M., & Ur, E. (2007). 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children. Canadian Medical Association Journal, 176(8 Suppl), s1–s13. http://dx.doi.org/10.1503/cmaj.070306http://dx.doi.org/10.1503/cmaj.061409

Louise, I., Melo, P. De, De, E. B. T., & Mancini-filho, J. (2014). Pomegranate Seed Oil ( Punica Granatum L .): A Source of Punicic Acid ( Conjugated α -Linolenic Acid ), 2, 1–11.

Monasta, L., Batty, G. D., Cattaneo, A., Lutje, V., Ronfani, L., Van Lenthe, F. J., & Brug, J. (2010). Early-life determinants of overweight and obesity: a review of systematic reviews. Obesity Reviews, 11(10), 695–708. http://dx.doi.org/10.1111/j.1467-789X.2010.00735.x

Najmi, A., Nasiruddin, M., Khan, R. A., & Haque, S. F. (2008). Effect of Nigella sativa oil on various clinical and biochemical parameters of insulin resistance syndrome. International Journal of Diabetes in Developing Countries, 28(1), 11–14. http://dx.doi.org/10.4103/0973-3930.41980

Roh, C., & Jung, U. (2012). Screening of crude plant extracts with anti-obesity activity. International Journal of Molecular Sciences, 13(2), 1710–1719. http://dx.doi.org/10.3390/ijms13021710

Sambasivarao, S. V. (2013). NIH Public Access, 18(9), 1199–1216. http://doi.org/10.1016/j.micinf.2011.07.011.Innate

Shamsiya, T. K., Protectants, F., & Technology, F. (2015). Production and Purification of a New Inhibitor of Pancreatic Lipase andHormone Sensitive Lipase from Soil Actinomycetes, 11600–11609. http://doi.org/10.15680/IJIRSET.2015.0411134

Thomson, a. B. R., De Pover, a., Keelan, M., Jarocka-Cyrta, E., & Clandinin, M. T. (1997). Lipases Part B: Enzyme Characterization and Utilization. Methods in Enzymology, 286(1991), 3–44. http://dx.doi.org/10.1016/S0076-6879(97)86003-X

Topkafa, M., Kara, H., & Sherazi, S. T. H. (2015). Evaluation of the Triglyceride Composition of Pomegranate Seed Oil by RP-HPLC Followed by GC-MS. Journal of the American Oil Chemists’ Society, 92(6), 791–800. http://dx.doi.org/10.1007/s11746-015-2652-1

Tsujita, T., Ninomiya, H., & Okuda, H. (1989). p- N it ro p h e n y I butyrate h yd rol yz i n g activity of hormone-sensitive lipase from bovine adipose tissue, 30, 997–1004.

Villa-Ruano, N., Zurita-Vásquez, G. G., Pacheco-Hernández, Y., Betancourt-Jiménez, M. G., Cruz-Durán, R., & Duque-Bautista, H. (2013). Anti-Iipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México. Biological Research, 46(2), 153–60. http://dx.doi.org/10.4067/S0716-97602013000200006

Yanovski, S., Yanovski, & JA. (2014). Long-term Drug Treatment for Obesity: A Systematic and Clinical Review. Jama, 311(1), 74–86. http://dx.doi.org/10.1001/jama.2013.281361

Organization, W. H. (2003). Obesity and Overweight. Global Strateg on Diet, Physical Activity and Health, 1–2. http://dx.doi.org/10.1080/10810730903279694

Downloads

Published

2016-07-15

How to Cite

Shamsiya, T. K., J R, M., & H K, M. (2016). LIPASE INHIBITORS FROM NIGELLA SATIVA AND PUNICA GRANATUM AS AN EFFECTIVE APPROACH TOWARDS CONTROLLING OBESITY. LIFE: International Journal of Health and Life-Sciences, 2(2), 01–19. https://doi.org/10.20319/lijhls.2016.22.0119