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ABSTRACT: This article reports the effects of natural plant proteins on the morphology 
of zinc oxide nanoparticles (ZnONPs) prepared via a precipitation method. Green 
synthesised ZnONPs have a wide range of uses such as biomedical applications, water 
purification, optical devices and gas sensors. The non-toxic and economical technique 
described in this article is favourable for large-scale production too. ZnONPs were 
produced from a zinc acetate precursor with dye extract of Ixora Coccinea (IC) leaves as a 
capping agent. The as-prepared ZnONPs were characterised by X-ray diffraction (XRD), 
Fourier transform infrared (FTIR), UV-visible (UV-vis), scanning electron microscopy 
(SEM) and energy dispersive X-ray (EDX) techniques. The XRD analysis showed an 
average crystallite size of 23 nm. The SEM analysis revealed a reduction in aggregation 
of ZnO crystallites due to addition of dye extracts of IC. EDX and UV-vis results  
confirmed the formation of pure ZnONPs. Finally, the gas sensing properties of ZnO 
films, prepared by doctor blade method, were used to detect ethanol vapour. The results 
showed gas response ratios of 28.7 and 5.4 at 800 ppm and 40 ppm exposure, respectively. 
Furthermore, the response time and recovery time were found to be 24 sec and 47 sec, 
respectively at 200 ppm exposure of ethanol vapour.  
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1.	 INTRODUCTION

Nanomaterials are classified based on their size. Their size ranges from one to 
a few hundred nanometers. Materials at this scale show enhanced physical and 
chemical properties as compared to their bulk size. Nanoparticles of metal and 
metal oxide semiconductors (MOS) such as silver, iron oxide, tin oxide and zinc 
oxide are currently being used in several technologies such as photocatalytic dye 
degradation, biomedical and optoelectronic devices and gas sensing.1–5 Among 
various MOS nanoparticles, zinc oxide nanoparticles (ZnONPs) have garnered 
significant attention for their use in applications such as gas sensors, biosensors, 
pollution control and piezoelectric devices. This is primarily because of their high 
mobility and reactivity, biocompatibility and high chemical and thermal stability.6–7 

As such ZnONPs present an opportunity to further develop material science.

ZnO possesses fascinating properties such as a large band gap (3.37 eV) and 
exciton binding energy (60 meV), high transparency and easy tuning of electrical 
and optical behaviour. ZnO can be prepared to different morphologies such as 
nanoflowers, nanoparticles, nanosheets, nanorods, nanowires and hexagonal 
prismatic crystals using various conventional and new green synthesis methods.8–11 

Many of the available conventional physical and chemical processes used to 
synthesis metal oxide semiconductor nanoparticles (MOSNPs) are expensive and 
energy intensive.9  They also produce substantial quantities of toxic byproducts, 
prompting concerns for waste storage and removal. On the other hand, the green 
synthesis method, wherein plant extracts are used to prepare metal and metal 
oxide nanoparticles, is a cost-effective and alternative route with a reduced toxic 
waste load.12–20 Currently, ZnONPs have been synthesised using the extracts of 
Aloe barbadensis miller, Black tea, Citrus aurantifolia, Peltophorumpterocarpum, 
Cyanometraramiflora and surfactants such as sodium dodecyl sulfate (SDS), 
cetyltrimethylammonium bromide (CTAB).21–26 However, there has been limited 
work done on the synthesis of ZnONPs using dye extracts of the leaves from Ixora 
Coccinea (IC).27  

Since the sensing performance of ZnO sensor depends on the interactions of gas 
molecules with the adsorbed oxygen ions (O2

- or O-/O2-) on its surface, the surface 
morphology of ZnO plays an important role. The surface structure of ZnO can 
be modified by strategies like metal doping and surface treatment.28–29Among 
them, the addition of proteins and other phytochemicals from the natural plant 
is considered a significant one as it enhances the stability of the nanoparticles.19 

In this process, the extract’s presence not only aids in controlling the growth 
parameters such as aggregation of crystallites but also forms pure and narrow 
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particle size distributed materials.27 The present study describes the preparation of 
ZnONPs using dye extracts of IC leaves, its characterisation and its utilisation in 
the detection of ethanol vapour. 

2.	 EXPERIMENTAL

2.1	 Materials

IC leaves were collected from Calicut, Kerala, India. The most significant 
compounds in this plant extract are its hydroxyl and carbonyl groups. The 
phenolics and alkaloids present in the extract are responsible for capping the ZnO 
nanoparticles.27 Zinc acetate dehydrate was used as a metal ion precursor and 
sodium hydroxide (NaOH) as a precipitating agent.

2.2	 Preparation of the Dye Extract

First, fresh leaves of the IC plant were washed several times with distilled water. 
Then, they were dried and grinded at room temperature. Ten grams of grinded 
leaves were mixed with 40 ml of distilled water and heated to 60°C for 30 min, 
followed by filtration to remove the solid extract. Finally, the fine solution of dye 
extract of IC was preserved in a vessel for further study. 

2.3	 Preparation of ZnONPs and Film 

An aqueous solution of 0.5M zinc acetate dehydrate was mixed with 10 ml of 
above-prepared dye extract. The 2.0M NaOH was added drop wise to this solution 
while stirring continuously for 2 h. The pH of the mixture solution was maintained 
at 12. The precipitate was then washed and left for a day for sedimentation to 
occur. Afterward, it was separated from the upper supernatant liquid by a simple 
decantation process followed by centrifuging vigorously four times at 1,500 rpm 
for 10 min each. Finally, the yield was dried at 100°C in a dry air oven for 16 h.  
A sample of ZnONPs without the dye extract was also prepared following the 
same procedure for comparison. Both sets, ZnONPs with IC and ZnONPs  
without IC, were then deposited on a transparent conducting fluorine-doped tin 
oxide (FTO) substrate using the conventional doctor blade method. The deposited 
ZnO films were annealed at 550°C inside the muffle furnace. Finally, the film’s 
sensing performances were tested with various concentrations of ethanol vapour.
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3.	 RESULTS AND DISCUSSION

3.1	 X-ray Diffraction (XRD) 

The structural properties of ZnONPs prepared by the precipitation method were 
studied using XRD with Bruker D2 Phaser (Germany) Diffractometer of Cu-
Kα radiation of wavelength 1.54184 Ả at 30 kV operating voltage and 10 mA 
current in the 2θ range of 20° to 80° at a scanning rate of 0.33 degree per second 
at Charotar University of Science & Technology, CHARUSAT-Campus, India.  

The crystallite size (D) was calculated using Debye Scherrer’s formula: D = 
0.9λ

β cos θ
where 0.9 is the correction factor, λ is the wavelength of the X-radiation, β is 
the full width half maximum (FWHM) measured in radian of the diffraction peak 
and θ is the Bragg’s angle.14 The XRD powder patterns of ZnONPs prepared 
with and without IC are shown in Figure 1. The figure illustrated multiple peaks 
oriented along (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) 
and (202). All the peaks are indexed concerning the standard JCPDS values of 
card number 36-1451.24 The multiple sharp peaks observed in the XRD patterns 
are characteristics of the polycrystalline nature of ZnO. The calculated values of 
average crystallite size (D) and lattice parameters of both sets of ZnONPs are 
shown in Table 1. The result showed the average value of D was 23.80 nm for 
ZnONPs prepared with IC and 22.02 nm for ZnONPs without IC. The c/a ratio 
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Figure 1:  XRD patterns of as-prepared ZnONPs.
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for both samples was 1.6 suggesting the wurtzite hexagonal phase of ZnO. There 
was no observation of other impurity peaks in the XRD pattern, proving that the 
as-prepared ZnONPs are of high purity.

Table 1:  Calculated average crystallite size and lattice parameters of ZnONPs.

Samples Average crystallite size (nm)
Lattice parameters (Å)

a c

ZnONP  with IC 23.08 3.01547 5.2229
ZnONP  without IC 22.02 3.25662 5.2150

3.2	 Scanning Electron Microscopy (SEM)

Figure 2(a) and 2(b) illustrates the SEM images of ZnONPs prepared without 
and with dye extract at a resolution of 200 nm. The captured images revealed 
the aggregated clusters of ZnO crystallites.24 Figure 2(b) clearly shows the less 
aggregated morphology of ZnONPs which was due to the presence of IC extract 
acting as a capping agent.

(a) ZnONP without IC

(b) ZnONP with IC

Figure 2:  SEM images ZnONPs (a) without IC and (b) with IC.
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3.3	 Energy Dispersive X-ray (EDX) Analysis

The results of the EDX performed to uncover the elemental composition of the 
synthesised ZnONPs with and without dye extract, are portrayed in Figure 3. The 
figure clearly shows two sharp peaks at 1.0 keV and 8.5 keV and a lower one at  
0.5 keV, the characteristic features of zinc and oxygen. These results agreed with 
the reported values.13 The atomic percentage of the present elements were 55.43% 
of zinc and 44.57% of oxygen in bare ZnONPs (Figure 3[a]) and 53.80% of zinc 
and 46.20% of oxygen for ZnONPs prepared with IC (Figure 3[b]). The results 
confirmed the high purity of as-synthesised ZnONPs. 

Figure 3:  EDX spectra of ZnONPs (a) without IC and (b) with IC.

3.4	 Fourier Transforms Infrared (FTIR) and UV-Visible (UV-vis) 
Spectroscopy

Figure 4(a) depicts the FTIR spectrum of ZnONPs synthesised with IC 
in the wavenumber range of 400 cm−1 to 4,000 cm−1. It clearly shows 
major bands at 400 cm−1, 574 cm−1, 880 cm−1, 1,407 cm−1, 1,628 cm−1 
and 3,420 cm−1. The sharp infrared (IR) band extends from 400 cm−1 
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to 650 cm−1 corresponding to metal oxide vibration confirmed the 
formation of ZnONPs. The peak at 880 cm−1 indicated the alkane sp2 
hybridised =C-H bond and the alkane sp3 hybridised C-H bond bending,  
respectively.12 The peaks in the regions 1,407 cm−1 and 1,628 cm−1 
were ascribed to the vibrating, stretching, and bending modes of 
water molecules present in the sample respectively. Finally, a huge 
depression peak at 3,420 cm−1 showed the presence of hydroxyl group.13 
The UV-vis absorption spectrum was captured using an Ocean Optics  
spectrophotometer (Model: HR4000CG-UV-NIR, Singapore), to confirm 
the formation of ZnONPs as depicted in Figure 4(b). The peak observed  
at 340 nm as certained the formation of ZnONPs. 
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Figure 4:  (a) FTIR and (b) absorbance of ZnONPs prepared with dye extract of IC.
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3.5	 Sensitivity Measurements

The gas response was calculated by measuring the ratio of Ra/Rg, where Ra and 
Rg are the resistances of ZnO measured in air and gas, respectively. The electrical 
resistance of MOS is a temperature-sensitive property so its working temperature 
must be optimised.29 Figure 5(a) shows the optimised temperature of 285°C for 
both samples. Figure 5(b) illustrated the linear increment of gas response with 
increasing gas concentration measured at its optimised temperature. The measured 
values of gas response, response and recovery times were shown in Table 2.  
It shows a gas response of 28.7 for ZnO with IC and 37.4 for ZnO without IC at 
800 ppm of ethanol exposure. The difference in these values may be due to the 
change in the morphology of ZnO.  The gas response ratios were 5.4 and 3.5 for 
40 ppm exposure of ethanol vapour. The inset in Figure 5(b) shows the response 
and recovery times of ZnO sensors with 200 ppm exposure of ethanol vapour for 
clarity. The response and recovery times were respectively 24 sec and 47 sec for 
ZnO with IC, whereas these values were respectively 21 sec and 27 sec for ZnO 
without IC. 

Table 2: Gas response, response and recovery times of the ZnO sensors.

Concentration  
of ethanol (ppm)

ZnO without IC ZnO with IC

Response 
Ra/Rg

Response 
time (sec)

Recovery 
time (sec)

Response 
Ra/Rg

Response 
time (sec)

Recovery 
time (sec)

40 3.50 15 33 5.47 23 50
80 3.97 21 27 5.56 26 51

120 4.38 23 23 6.22 25 49
160 6.20 23 25 9.94 27 46
200 19.28 21 27 10.23 24 47
400 26.16 24 27 13.63 27 49
800 37.43 19 25 28.76 26 49
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4.	 CONCLUSION

ZnONPs were successfully fabricated using dye extract of IC leaves as a capping 
agent by precipitation method. Investigations of morphology, structure and 
dimension of ZnONPs were performed by SEM, XRD and UV-vis analyses. The 
average crystallite size of ZnONPs was found to be 23 nm. The SEM investigation 
illustrated the change in morphology of ZnO from highly clustered to less aggregate 
clustered of ZnO crystallites after IC dye extract was added. Furthermore, the 
presence of hydroxyl groups, ZnO bands and the percentage content of zinc and 
oxygen were established by FTIR and EDX, respectively. The sensitivity results 
of ZnO film prepared with IC showed a gas response ratio of 28.7 and 5.4 for the 
exposure of 800 ppm and 40 ppm of ethanol vapour, respectively. 
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