Content of available forms of nitrogen, potassium and phosphorus in ornithogenic and other soils of the Fildes Peninsula (King George Island, Western Antarctica)

Authors

  • Evgeny Abakumov Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, 16th Liniya V. O., 29, Saint Petersburg, 199178, Russian Federation https://orcid.org/0000-0002-5248-9018

DOI:

https://doi.org/10.21638/spbu03.2018.203

Abstract

Maritime Antarctica is an interesting object for soil scientists because most of them nowadays or recently were exposed to ornitogenic effect. Soils of the Fildes Peninsula have been investigated in terms of chemical composition and available nutrients concentration. Four groups of soils with various ornitogenic effect were selected for chemical analyses: current ornitogenic soils, soils of former birds habitats — organogenic mates, natural soils without current evident bird effect — Lithosols and Technosols. Ornitogenic effect is evident in soil formation in three types of soils investigated. The maximum effect of organic matter transportation and accumulation is pronounced in Ornitogenic soils and Organogenic mat. The last one are considered as recently been colonized by birds and this fact was the reason for initiation of formation of organogenic mats due to accumulation of nutrients. Some residual effect of birds can be revealed in Lithosols, where increased content of ammonium ions and available phosphorus was fixed. Thechnosols as soils constructed from local mineral grounds have no any evidences of ornitogenic accumulation. We suggest that, majority of soils, situated on Fildes peninsula recently were exposed to ornitogenic effect. Ornitogenic effect resulted in formation of modern soil cover of the Fildes Peninsula.

Keywords:

Antarctica, ornithogenic soils, nutrients, nitrogen, phosphorus, potassium

Downloads

Download data is not yet available.
 

References

Abakumov, E. V. 2010. The sources and composition of humus in some soils of West Antarctica. Eurasian Soil Science 43(5):499–508. https://doi.org/10.1134/S1064229310050030" target="_blank">https://doi.org/10.1134/S1064229310050030

Abakumov, E. 2017. Characterisation of humic acids, isolated from selected subantarctic soils by 13C-NMR spectroscopy. Czech Polar Reports 7(1):1–10. https://doi.org/10.5817/CPR2017-1-1" target="_blank">https://doi.org/10.5817/CPR2017-1-1

Abakumov, E., and Mukhametova, N. 2014. Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations. Solid Earth 5:705–712. https://doi.org/10.5194/se-5-705-2014" target="_blank">https://doi.org/10.5194/se-5-705-2014

Abakumov, E. V., Gagarina, E. I., Sapega, V. F., and Vlasov, D. Y. 2013. Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations. Eurasian Soil Science 46(12):1219–1229. https://doi.org/10.1134/S1064229313120028" target="_blank">https://doi.org/10.1134/S1064229313120028

Abakumov, E. V., Parnikoza, I. Y., Vlasov, D. Y., and Lupachev, A. V. 2016. Biogenic–abiogenic interaction in antarctic ornithogenic soils; pp. 237–248 in: O. V. Frank-Kamenetskaya et al. (eds.) Biogenic ― Abiogenic Interactions in Natural and Anthropogenic Systems, Lecture Notes in Earth System Sciences, Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-24987-2_19" target="_blank">https://doi.org/10.1007/978-3-319-24987-2_19

Birkenmajer, K., 1990. Geology and climatostratigraphy of Tertiary glacial and interglacial successions on King George Island, South Shetland Islands (West Antarctica). Zentralblatt für Geologie und Paläontologie Teil 1(1/2):141–151.

Bockheim, J. G. (Ed.) 2015. The Soils of Antarctica. Springer International Publishing, Switzerland, 322 pp. https://doi.org/10.1007/978-3-319-05497-1" target="_blank">https://doi.org/10.1007/978-3-319-05497-1

Bockheim, J. G. and Ugolini, F. C. 1990. A review of pedogenic zonation in well-drained soils of the southern circumpolar region. Quaternary Research 34(1):47–66. https://doi.org/10.1016/0033-5894(90)90072-S" target="_blank">https://doi.org/10.1016/0033-5894(90)90072-S

Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., Wihelm, K., and Nieuwendam, A. 2013. Climate warming and permafrost dynamics on the Antarctic Peninsula region. Global and Planetary Change 100:215–223. https://doi.org/10.1016/j.gloplacha.2012.10.018" target="_blank">https://doi.org/10.1016/j.gloplacha.2012.10.018

Campbell, I. B. and Claridge, G. G. C. 1987. Antarctica: Soils, Weathering Processes and Environment. Elsevier: Amsterdam. 368 pp.

EPA method 350.1. Determination of Ammonia Nitrogen by automated colorimetry. Revision 2.0. August 1993.

GOST 26489-85 Soils. Determination of exchangeable ammonium by CINAO method.

GOST 54650-2011 Soils. Determination of mobile phosphorus and potassium compounds by Kirsanov method modified by CINAО

IUSS Working Group WRB 2015. World Reference Base for Soil Resources 2014, update 2015.

International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

Jeong, G. Y. 2006. Radiocarbon ages of sorted circles on King George Island, South Shetland Island, West Antarctica. Antarctic Science 18(2):265–270. https://doi.org/10.1017/S0954102006000307" target="_blank">https://doi.org/10.1017/S0954102006000307

Korsun, S., Kozeretska, I., Parnikoza, I., Skarivska, L., Lugovska, K., and Klimenko, I. 2008. Effect of natural and anthropogenic factors on the chemical composition of soils of the King George in littoral Antarctic. Agroecological Journal 4:45–52.

Kozeretska, I. A., Parnikoza, I. Yu., Mustafa, O., Tyschenko, O. V., Korsun, S. G., and Convey, P. 2010. Development of Antarctic herb tundra vegetation near Arctowski station, King George Island. Polar Science 3(4):254–261. https://doi.org/10.1016/j.polar.2009.10.001" target="_blank">https://doi.org/10.1016/j.polar.2009.10.001

Kubiena, W. L. 1970. Micromorpohologic investigation of Antarctic soils. Antarctic Journal 5(4):105–106.

Kuo, S. 1996. Phosphorus; pp. 869–919 in: Bartels J. M. and Bigham J. M. (eds.). Methods of Soil Analysis, 3. Chemical Methods. Madison: Soil Science Society of America.

López-Martínez, J., Serrano, E., Schmid, T., Mink, S., and Linés, C. 2012. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology 155–156:62–79. https://doi.org/10.1016/j.geomorph.2011.12.018" target="_blank">https://doi.org/10.1016/j.geomorph.2011.12.018

Lupachev, A. V. and Abakumov, E. V. 2013. Soils of Marie Byrd Land, West Antarctica. Eurasian Soil Science 46:994–1006. https://doi.org/10.1134/S1064229313100049" target="_blank">https://doi.org/10.1134/S1064229313100049

Management Plan for Antarctic Specially Protected Area No. 125, 2009. Measure 6, Annex., Antarctic Treaty Secretariat. Retrieved on 23/06/2018 from https://www.ats.aq/documents/recatt/Att273_e.pdf" target="_blank">https://www.ats.aq/documents/recatt/Att273_e.pdf

Mausbacher, R., Muller, J., Munnich, M., Schmidt, R. 1989. Evolution of postglacial sedimentation in Antarctic lakes (King Georges Island). Zeitschrift fur Geomorphologie 33:219–234.

Mergelov, N. S., Goryachkin, S. V., Shorkunov, I. G., Zazovskaya, E. P., and Cherkinskii, A. E. 2012. Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica. Eurasian Soil Science 45(10):901–918. https://doi.org/10.1134/S1064229312100067" target="_blank">https://doi.org/10.1134/S1064229312100067

Michel, R. F. M., Schaefer, C. E. G. R., López-Martínez, J., Simas, F. N. B., Haus, N. W., Serrano, E., and Bockheim, J. G. 2014. Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica. Geomorphology 225:76–86. https://doi.org/10.1016/j.geomorph.2014.03.041" target="_blank">https://doi.org/10.1016/j.geomorph.2014.03.041

Navas, A., López-Martínez, J., Casas, J., Machín, J., Durán, J. J., Serrano, E., Cuchi, J. A., and Mink, S. 2008. Soil characteristics on varying lithological substrates in the South Shetland Islands, maritime Antarctica. Geoderma 144(1–2):123–139. https://doi.org/10.1016/j.geoderma.2007.10.011" target="_blank">https://doi.org/10.1016/j.geoderma.2007.10.011

Parnikoza, I., Miryuta, N. Yu., Maidanyuk, D. N., Loparev, S. A., Korsun, S. G., Budzanivska, І.G., Shevchenko, Т. P., Polischuk, V. P., Кunakh, V. А., and Kozeretska, I. А. 2007. Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in Maritime Antarctic. Polar Science 1(2–4):121–128. https://doi.org/10.1016/j.polar.2007.10.002" target="_blank">https://doi.org/10.1016/j.polar.2007.10.002

Parnikoza, I., Abakumov, E., Korsun, S., Klymenko, I., Netsyk, M., Kudinova, A., and Kozeretska, I. 2016. Soils of the argentine islands, antarctica: Diversity and characteristics. Polarforschung 86(2):83–96. https://doi.org/10.2312/polarforschung.86.2.83" target="_blank">https://doi.org/10.2312/polarforschung.86.2.83

Pereira, T. T. C., Schaefer, C. E. G. R., Ker J. C., Almeida, C. C., Almeida, I. C. C., and Pereira, A. B. 2013. Genesis, mineralogy and ecological significance of ornithogenic soils from a semi-desert polar landscape at Hope Bay, Antarctic Peninsula. Geoderma 209–210:98–109. https://doi.org/10.1016/j.geoderma.2013.06.012" target="_blank">https://doi.org/10.1016/j.geoderma.2013.06.012

Rakusa-Suszczewski, S. 2002. King George Island — South Shetland Islands, Maritime Antarctic; 23–39 in: Beyer, L. and Bölter, M. (eds.), Geoecology of Antarctic Ice Free Coastal Landscapes. Springer Verlag: Berlín. https://doi.org/10.1007/978-3-642-56318-8_3" target="_blank">https://doi.org/10.1007/978-3-642-56318-8_3

Ramsay, A. J. 1983. Bacterial biomass in Ornithogenic soils of Antarctica. Journal of Polar Biology 1:221–225. https://doi.org/10.1007/BF00443192" target="_blank">https://doi.org/10.1007/BF00443192

Simonov, I. M., 1977. Physical-geographic description of the fildes peninsula (South Shetland Islands). Polar Geography 1:223–242. https://doi.org/10.1080/10889377709388627" target="_blank">https://doi.org/10.1080/10889377709388627

Speir, T. W. and Cowling, J. C. 1984. Ornithogenic soils of the Cape Bird adelie penguin rookeries, Antarctica. Polar Biology 2(4):199–205. https://doi.org/10.1007/BF00263625" target="_blank">https://doi.org/10.1007/BF00263625

Simas, F. N. B., Schaefer, C. E. G. R., Melo, V. F., Albuquerque-Filho, M. R., Michel, R. F. M., Pereira, V. V., Gomes, M. R. M., and da Costa, L. M. 2007. Ornithogenic cryosols from Maritime Antarctica: Phosphatization as a soil forming process. Geoderma 138(3–4):191–203. https://doi.org/10.1016/j.geoderma.2006.11.011" target="_blank">https://doi.org/10.1016/j.geoderma.2006.11.011

Shaefer, C. E. G. R., Simas, F. N. B., Gilkes, R. J., Mathison C., da Costa, L. M., and Albuquerque, A. 2008. Micromorphology and microchemistry of selected Cryosoils from maritime Antarctica. Geoderma 144(1–2):104–115. https://doi.org/10.1016/j.geoderma.2007.10.018" target="_blank">https://doi.org/10.1016/j.geoderma.2007.10.018

Smellie J. L., Pankhurst R. J., Thomson M. R. A., Davies R. E. S., 1984. The geology of the South Shetland Islands: VI. Stratigraphy, geochemistry and evolution. Cambridge, British Antarctic Survey, 85 pp. (British Antarctic Survey Scientific Reports, 87).

Tatur, A., Keck, A., 1990. Phosphates in ornithogenic soils of the maritime Antarctic. Proc. NIPR Symp. Polar Biology 3:133–150.

Tatur, A. 2002. Ornithogenic Ecosystems in the Maritime Antarctic — Formation, Development and Disintegration; pp. 161–184 in: Beyer, L., and Bölter M. (eds.) Geoecology of Antarctic Ice-Free Coastal Landscapes. Ecological Studies (Analysis and Synthesis), vol 154. Springer: Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56318-8_10" target="_blank">https://doi.org/10.1007/978-3-642-56318-8_10

Tatur A. and Barczuk, A. 1985. Ornithogenic Phosphates on King George Island in the Maritime Antarctic; pp. 163–168 in: Siegfried, W. R., Condy, P. R., and Laws, R. M. (eds.). Antarctic Nutrient Cycles and Food Webs. Springer: Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82275-9_22" target="_blank">https://doi.org/10.1007/978-3-642-82275-9_22

Vlasov, D. Yu., Zelenskaya, M. S., Kirtsideli, I. Y., Abakumov, E. V., Krylenkov, V. A., and Lukin, V. V. 2012. Fungi on natural and anthropogenic substrates in Western Antarctica. Mycology and Phytopathology 46(1):20–26.

Zhao, Ye. 2000. The soil and environment in the Fildes Peninsula of Kind George Island, Antarctica. China, Bejing. 187 pp.

Zhu, R., Liu, Y., Ma, E., Sun, J., Xu, H., and Sun, L. 2009. Nutrient compositions and potential greenhouse gas production in penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica. Antarctic Science 21(5):427–438. https://doi.org/10.1017/S0954102009990204" target="_blank">https://doi.org/10.1017/S0954102009990204

Wen, J., Xie, Z., Han, J., and Lluberas, A. 1994. Climate, mass balance and glacial changes on small dome of Collins Ice Cap, King George Island, Antarctica. Antarctic Research 5(1):52–61.

Downloads

Published

2018-08-29

How to Cite

Abakumov, E. (2018). Content of available forms of nitrogen, potassium and phosphorus in ornithogenic and other soils of the Fildes Peninsula (King George Island, Western Antarctica). Biological Communications, 63(2), 109–116. https://doi.org/10.21638/spbu03.2018.203

Issue

Section

Full communications

Most read articles by the same author(s)

1 2 > >>