Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Empagliflozin Exhibits Hepatoprotective Effects Against Bile Duct Ligation-induced Liver Injury in Rats: A Combined Molecular Docking Approach to In Vivo Studies

Author(s): Nasrin Shakerinasab, Mahdokht Azizi, Mahboubeh Mansourian, Hossein Sadeghi, Shirvan Salaminia, Reza Abbasi, Mohammad Esmaeil Shahaboddin and Amir Hossein Doustimotlagh*

Volume 28, Issue 40, 2022

Published on: 04 November, 2022

Page: [3313 - 3323] Pages: 11

DOI: 10.2174/1381612829666221027112239

Price: $65

Abstract

Background: Cholestatic liver damage is a chronic disease caused by dysfunction of the hepaticbiliary system. Oxidative stress and inflammation are essential factors in the pathogenesis of cholestasis. Thus, the current study was designed to examine the effect of empagliflozin on bile duct ligation-induced liver damage in rats.

Methods: This study was done on male Wistar rats, which were randomly assigned to the four experimental groups: sham control (SC), bile duct ligation (BDL), SC plus empagliflozin (SC+EMPA) (receiving 10 mg of EMPA orally for 7 days), BDL plus empagliflozin 10 mg/kg (BDL+ EMPA). At the end of the study, the rats were sacrificed, and serum and tissue samples were collected to analyze biochemical parameters, biomarkers of oxidative stress, inflammatory markers, and histopathological changes. The molecular docking technique was performed to elucidate the interaction of EMPA and Cu/Zn-superoxide dismutase (SOD1).

Results: The results showed that BDL elevated the serum activity of ALT, AST, ALP, and levels of TBIL and TPro. BDL also intensifies the oxidative stress state in rats, which was confirmed by augmenting lipid peroxidation (MDA), protein oxidation (PCO), and altering antioxidant defense parameters through decreased SOD, catalase (CAT), and glutathione peroxidase (GPX) levels. Furthermore, the histopathological changes in the liver demonstrated the aggravation of inflammation and oxidative stress. In contrast, treatment with EMPA has shown anti-inflammatory and anti-oxidant effects by reducing TNF-α and IL-6 pro-inflammatory marker proteins, restoring the antioxidant status (increased SOD and GPX), reducing ALT, AST, ALP, TBIL levels, and protein oxidation, and improving the histopathological alterations through reducing bile duct proliferation, fibrosis, focal and portal inflammation. According to the attained findings, the SOD1 activity can be regulated by the EMPA. Our documentation presents direct evidence at the molecular level related to the ability of EMPA to exert its antioxidant performance through certain measures in a particular molecular route.

Conclusion: The results showed EMPA to have hepatic protective effects in rats against cholestatic liver injury, an effect mediated by its antioxidant and anti-inflammatory properties.

Keywords: Cholestasis, empagliflozin, oxidative stress, bile duct ligation, rats, molecular docking.

« Previous
[1]
Aktay G, Deliorman D, Ergun E, Ergun F, Yeşilada E, Çevik C. Hepatoprotective effects of Turkish folk remedies on experimental liver injury. J Ethnopharmacol 2000; 73(1-2): 121-9.
[http://dx.doi.org/10.1016/S0378-8741(00)00286-5] [PMID: 11025147]
[2]
Moon AM, Singal AG, Tapper EB. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin Gastroenterol Hepatol 2020; 18(12): 2650-66.
[http://dx.doi.org/10.1016/j.cgh.2019.07.060] [PMID: 31401364]
[3]
Olteanu D, Nagy A, Dudea M, et al. Hepatic and systemic effects of rosuvastatin on an experimental model of bile duct ligation in rats. J Physiol Pharmacol 2012; 63(5): 483-96.
[PMID: 23211302]
[4]
Zollner G, Trauner M. Mechanisms of cholestasis. Clin Liver Dis 2008; 12(1): 1-26. vii.
[http://dx.doi.org/10.1016/j.cld.2007.11.010] [PMID: 18242495]
[5]
Lee TY, Chang HH, Chen JH, Hsueh ML, Kuo JJ. Herb medicine Yin-Chen-Hao-Tang ameliorates hepatic fibrosis in bile duct ligation rats. J Ethnopharmacol 2007; 109(2): 318-24.
[http://dx.doi.org/10.1016/j.jep.2006.07.042] [PMID: 16989967]
[6]
Ommati MM, Amjadinia A, Mousavi K, Azarpira N, Jamshidzadeh A, Heidari R. N-acetyl cysteine treatment mitigates biomarkers of oxidative stress in different tissues of bile duct ligated rats. Stress 2021; 24(2): 213-28.
[http://dx.doi.org/10.1080/10253890.2020.1777970] [PMID: 32510264]
[7]
Wei S, Ma X, Niu M, et al. Mechanism of paeoniflorin in the treatment of bile duct ligation-induced cholestatic liver injury using integrated metabolomics and network pharmacology. Front Pharmacol 2020; 11586806.
[http://dx.doi.org/10.3389/fphar.2020.586806] [PMID: 33192530]
[8]
El-hawary SS, Ali ZY, Younis IY. Hepatoprotective potential of standardized Ficus species in intrahepatic cholestasis rat model: Involvement of nuclear factor-κB, and Farnesoid X receptor signaling pathways. J Ethnopharmacol 2019; 231: 262-74.
[http://dx.doi.org/10.1016/j.jep.2018.11.026] [PMID: 30458280]
[9]
Zou J, Li W, Wang G, et al. Hepatoprotective effects of Huangqi decoction (Astragali radix and Glycyrrhizae radix et Rhizoma) on cholestatic liver injury in mice: Involvement of alleviating intestinal microbiota dysbiosis. J Ethnopharmacol 2021; 267113544.
[http://dx.doi.org/10.1016/j.jep.2020.113544] [PMID: 33152436]
[10]
Huang YT, Hsu YC, Chen CJ, Liu CT, Wei YH. Oxidative-stress-related changes in the livers of bile-duct-ligated rats. J Biomed Sci 2003; 10(2): 170-8.
[http://dx.doi.org/10.1007/BF02256052] [PMID: 12595753]
[11]
Sadeghi H, Jahanbazi F, Sadeghi H, et al. Metformin attenuates oxidative stress and liver damage after bile duct ligation in rats. Res Pharm Sci 2019; 14(2): 122-9.
[http://dx.doi.org/10.4103/1735-5362.253359] [PMID: 31620188]
[12]
Sadeghi H, Azarmehr N, Razmkhah F, et al. The hydroalcoholic extract of watercress attenuates protein oxidation, oxidative stress, and liver damage after bile duct ligation in rats. J Cell Biochem 2019; 120(9): 14875-84.
[http://dx.doi.org/10.1002/jcb.28749] [PMID: 31016763]
[13]
Orellana M, Rodrigo R, Thielemann L, Guajardo V. Bile duct ligation and oxidative stress in the rat: effects in liver and kidney. Comp Biochem Physiol C Toxicol Pharmacol 2000; 126(2): 105-11.
[PMID: 11050682]
[14]
Mansourian M, Sadeghi H, Doustimotlagh AH. Activation of the glutathione peroxidase by metformin in the bile-duct ligation-induced liver injury: in vivo combined with molecular docking studies. Curr Pharm Des 2018; 24(27): 3256-63.
[http://dx.doi.org/10.2174/1381612824666181003114108] [PMID: 30280660]
[15]
Kosters A, Karpen SJ, Eds. The role of inflammation in cholestasis: Clinical and basic aspects. Semin liver Dise 2010; 30(2): 186-94.
[16]
Mohamed HE, Asker ME, Keshawy MM, Hasan RA, Mahmoud YK. Inhibition of tumor necrosis factor-α enhanced the antifibrotic effect of empagliflozin in an animal model with renal insulin resistance. Mol Cell Biochem 2020; 466(1-2): 45-54.
[http://dx.doi.org/10.1007/s11010-020-03686-x] [PMID: 31933108]
[17]
Yokoyama Y, Nagino M, Nimura Y. Mechanism of impaired hepatic regeneration in cholestatic liver. J Hepatobiliary Pancreat Surg 2007; 14(2): 159-66.
[http://dx.doi.org/10.1007/s00534-006-1125-1] [PMID: 17384907]
[18]
Gong Y, Yang Y. Activation of Nrf2/AREs-mediated antioxidant signalling, and suppression of profibrotic TGF-β1/Smad3 pathway: a promising therapeutic strategy for hepatic fibrosis — A review. Life Sci 2020; 256117909.
[http://dx.doi.org/10.1016/j.lfs.2020.117909] [PMID: 32512009]
[19]
Perry JJP, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta Proteins Proteomics 2010; 1804(2): 245-62.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.004]
[20]
Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol 2013; 1(2): 140-51.
[http://dx.doi.org/10.1016/S2213-8587(13)70050-0] [PMID: 24622320]
[21]
Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H, et al. Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran J Basic Med Sci 2019; 22(4): 384-90.
[PMID: 31168342]
[22]
Kolijn D, Pabel S, Tian Y, et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res 2021; 117(2): 495-507.
[http://dx.doi.org/10.1093/cvr/cvaa123] [PMID: 32396609]
[23]
Jojima T, Tomotsune T, Iijima T, Akimoto K, Suzuki K, Aso Y. Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes. Diabetol Metab Syndr 2016; 8(1): 45.
[http://dx.doi.org/10.1186/s13098-016-0169-x] [PMID: 27462372]
[24]
Abed FN, Abbas EC, Al-Khalidi HA, AlMudhafar AM, Hadi NR. Anti-inflammatory and antioxidant effect of Empagliflozin on cerebral ischemia/reperfusion injury in rat model. Eur J Mol Clin Med 2021; 7(1): 4324-34.
[25]
Hattori S. Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and insulin resistance. Diabetol Metab Syndr 2018; 10(1): 93.
[http://dx.doi.org/10.1186/s13098-018-0395-5] [PMID: 30574207]
[26]
Kabel AM, Estfanous RS, Alrobaian MM. Targeting oxidative stress, proinflammatory cytokines, apoptosis and toll like receptor 4 by empagliflozin to ameliorate bleomycin-induced lung fibrosis. Respir Physiol Neurobiol 2020; 27: 3103316.
[http://dx.doi.org/10.1016/j.resp.2019.103316] [PMID: 31600583]
[27]
Ojima A, Matsui T, Nishino Y, Nakamura N, Yamagishi S. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm Metab Res 2015; 47(9): 686-92.
[http://dx.doi.org/10.1055/s-0034-1395609] [PMID: 25611208]
[28]
Abdelhamid AM, Elsheakh AR, Abdelaziz RR, Suddek GM. Empagliflozin ameliorates ethanol-induced liver injury by modulating NF-κB/Nrf-2/PPAR-γ interplay in mice. Life Sci 2020; 256117908.
[http://dx.doi.org/10.1016/j.lfs.2020.117908] [PMID: 32512011]
[29]
Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia 2018; 61(10): 2155-63.
[http://dx.doi.org/10.1007/s00125-018-4702-3] [PMID: 30066148]
[30]
Penta VGS. Effect of Empagliflozin on insulin sensitivity in the lean and obese Zucker rat: A model of metabolic syndrome 2018.
[31]
Ommati MM, Farshad O, Niknahad H, et al. Cholestasis-associated reproductive toxicity in male and female rats: The fundamental role of mitochondrial impairment and oxidative stress. Toxicol Lett 2019; 316: 60-72.
[http://dx.doi.org/10.1016/j.toxlet.2019.09.009] [PMID: 31520699]
[32]
Dkhil MA, Moniem AEA, Al-Quraishy S, Saleh RA. Antioxidant effect of purslane (Portulaca oleracea) and its mechanism of action. J Med Plants Res 2011; 5(9): 1589-93.
[33]
Nazmy EA, Helal MG, Said E. Nifuroxazide mitigates cholestatic liver injury by synergistic inhibition of Il-6/Β-catenin signaling and enhancement of BSEP and MDRP2 expression. Int Immunopharmacol 2021; 99107931.
[http://dx.doi.org/10.1016/j.intimp.2021.107931] [PMID: 34247051]
[34]
Dresner-Pollak R, Gabet Y, Steimatzky A, et al. Human parathyroid hormone 1-34 prevents bone loss in experimental biliary cirrhosis in rats. Gastroenterology 2008; 134(1): 259-67.
[http://dx.doi.org/10.1053/j.gastro.2007.10.025] [PMID: 18061175]
[35]
Strange RW, Antonyuk SV, Hough MA, Doucette PA, Valentine JS, Hasnain SS. Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes. J Mol Biol 2006; 356(5): 1152-62.
[http://dx.doi.org/10.1016/j.jmb.2005.11.081] [PMID: 16406071]
[36]
Arya A, Azarmehr N, Mansourian M, Doustimotlagh AH. Inactivation of the superoxide dismutase by malondialdehyde in the nonalcoholic fatty liver disease: a combined molecular docking approach to clinical studies. Arch Physiol Biochem 2021; 127(6): 557-64.
[http://dx.doi.org/10.1080/13813455.2019.1659827] [PMID: 31475569]
[37]
Rakhit R, Cunningham P, Furtos-Matei A, et al. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 2002; 277(49): 47551-6.
[http://dx.doi.org/10.1074/jbc.M207356200] [PMID: 12356748]
[38]
Fassihi A, Mahnam K, Moeinifard B, et al. Synthesis, calcium-channel blocking activity, and conformational analysis of some novel 1,4-dihydropyridines: application of PM3 and DFT computational methods. Med Chem Res 2012; 21(10): 2749-61.
[http://dx.doi.org/10.1007/s00044-011-9807-x]
[39]
Mansourian M, Saghaie L, Fassihi A, Madadkar-Sobhani A, Mahnam K. Linear and nonlinear QSAR modeling of 1,3,8-substituted-9-deazaxanthines as potential selective A2BAR antagonists. Med Chem Res 2013; 22(10): 4549-67.
[http://dx.doi.org/10.1007/s00044-012-0453-8]
[40]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[41]
Shin DS, DiDonato M, Barondeau DP, et al. Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. J Mol Biol 2009; 385(5): 1534-55.
[http://dx.doi.org/10.1016/j.jmb.2008.11.031] [PMID: 19063897]
[42]
Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19(14): 1639-62.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B]
[43]
Taheri S, Nazifi M, Mansourian M, Hosseinzadeh L, Shokoohinia Y. Ugi efficient synthesis, biological evaluation and molecular docking of coumarin-quinoline hybrids as apoptotic agents through mitochondria-related pathways. Bioorg Chem 2019; 91103147.
[http://dx.doi.org/10.1016/j.bioorg.2019.103147] [PMID: 31377390]
[44]
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 1995; 8(2): 127-34.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[45]
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph 1996; 14(1): 33-8. 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[46]
Tag CG, Sauer-Lehnen S, Weiskirchen S, Borkham-Kamphorst E, Tolba RH, Tacke F. Bile duct ligation in mice: Induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp 2015; 2015(95)
[http://dx.doi.org/10.3791/52438]
[47]
Motawi TK, Hamed MA, Shabana MH, Hashem RM, Aboul Naser AF. Zingiber officinale acts as a nutraceutical agent against liver fibrosis. Nutr Metab (Lond) 2011; 8(1): 40.
[http://dx.doi.org/10.1186/1743-7075-8-40] [PMID: 21689445]
[48]
Pastor A, Collado PS, Almar M, González-Gallego J. Antioxidant enzyme status in biliary obstructed rats: effects of N-acetylcysteine. J Hepatol 1997; 27(2): 363-70.
[http://dx.doi.org/10.1016/S0168-8278(97)80183-3] [PMID: 9288612]
[49]
Zhang Y, Lu Y, Ji H, Li Y. Anti-inflammatory, anti-oxidative stress and novel therapeutic targets for cholestatic liver injury. Biosci Trends 2019; 13(1): 23-31.
[http://dx.doi.org/10.5582/bst.2018.01247] [PMID: 30814402]
[50]
Sharifi-Rigi A, Heidarian E. Protective and anti-inflammatory effects of silymarin on paraquat-induced nephrotoxicity in rats. J Herbmed Pharmacol 2019; 8(1): 28-34.
[http://dx.doi.org/10.15171/jhp.2019.05]
[51]
Veskovic M, Mladenovic D, Milenkovic M, et al. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol 2019; 848: 39-48.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.043] [PMID: 30689995]
[52]
Amin EF, Rifaai RA, Abdel-latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol 2020; 34(5): 548-58.
[http://dx.doi.org/10.1111/fcp.12548] [PMID: 32068294]
[53]
Heidari R, Moezi L, Asadi B, Ommati MM, Azarpira N. Hepatoprotective effect of boldine in a bile duct ligated rat model of cholestasis/cirrhosis. PharmaNutrition 2017; 5(3): 109-17.
[http://dx.doi.org/10.1016/j.phanu.2017.07.001]
[54]
Possible protective effect of onion supplementation on hepatic functional and structural alterations induced by cholestasis. Med J Cairo Univ 2019; 87: 3491-9.
[http://dx.doi.org/10.21608/mjcu.2019.65646]
[55]
Zhao C, Sun J, Jin Y, Duan Z, Lei W. Activation of α7nAChR preserves intestinal barrier integrity and ameliorates cholestasis liver fibrosis in mice by enhancing the HO-1/STAT3 signaling to inhibit NF-κB activation. Biomed Pharmacother 2022; 149: 112733.
[56]
Hubel E, Saroha A, Park WJ, et al. Sortilin deficiency reduces ductular reaction, hepatocyte apoptosis, and liver fibrosis in cholestatic-induced liver injury. Am J Pathol 2017; 187(1): 122-33.
[http://dx.doi.org/10.1016/j.ajpath.2016.09.005] [PMID: 27842214]
[57]
Xiao Y, Wang J, Yan W, et al. Dysregulated miR-124 and miR-200 expression contribute to cholangiocyte proliferation in the cholestatic liver by targeting IL-6/STAT3 signalling. J Hepatol 2015; 62(4): 889-96.
[http://dx.doi.org/10.1016/j.jhep.2014.10.033] [PMID: 25450715]
[58]
Xia JL, Dai C, Michalopoulos GK, Liu Y. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am J Pathol 2006; 168(5): 1500-12.
[http://dx.doi.org/10.2353/ajpath.2006.050747] [PMID: 16651617]
[59]
Ding F, Dokholyan NV. Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proc Natl Acad Sci USA 2008; 105(50): 19696-701.
[http://dx.doi.org/10.1073/pnas.0803266105] [PMID: 19052230]
[60]
Fisher CL, Cabelli DE, Tainer JA, Hallewell RA, Getzoff ED. The role of arginine 143 in the electrostatics and mechanism of Cu, Zn superoxide dismutase: Computational and experimental evaluation by mutational analysis. Proteins 1994; 19(1): 24-34.
[http://dx.doi.org/10.1002/prot.340190105] [PMID: 8066083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy