Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

General Research Article

Differential Diagnosis of Behavioral Variant and Semantic Variant of Frontotemporal Dementia Using Visual Rating Scales

Author(s): Stamo Manouvelou, Vasilios Koutoulidis, Ioannis Tsougos, Maria Tolia*, George Kyrgias, Georgios Anyfantakis, Lia-Angela Moulopoulos, Athanasios Gouliamos and Sokratis Papageorgiou*

Volume 16, Issue 4, 2020

Page: [444 - 451] Pages: 8

DOI: 10.2174/1573405615666190225154834

Abstract

Background: Frontotemporal dementia (FTD) represents the second most frequent early onset of dementia in people younger than 65 years. The main syndromes encompassed by the term FTD are behavioral variant of Frontotemporal dementia (bvFTD), non-fluent variant primary progressive aphasia (nfvPPA) and semantic variant (SD).

Aims: To assess the bvFTD and SD, which represent the most common subtypes of FTD, using visual rating scales.

Methods: Brain MRI exams of 77 patients either with bvFTD (n=43) or SD (n=34) were evaluated. The rating scales used were: Global cortical atrophy (GCA), Fazekas Scale: periventricular (PV) and white matter (WM) changes, Koedam rating scale and visual scales regarding specific cortical regions: dorsofrontal (DF), orbitofrontal (OF), anterior cingulate (AC), basal ganglia (BG), anterior- temporal (AT), insula, lateral-temporal (LT), entorhinal (ERC), perirhinal (PRC), anterior fusiform( AF), anterior hippocampus (AHIP) and posterior hippocampus (PHIP). Both Left (L) and Right (R) hemispheres were evaluated.

Results: R-OF (p=0.059), L-OF (p<0.0005), L-AT (p=0.047) and L-AHIP (p=0.007) have a statistically significant effect on the variable occurrence of SD compared to bvFTD. The indicators with the highest value of the area under the curve (AUC) were R-AC (0.829), L-OF (0.808), L-AC (0.791) and L-AF (0.778). Highest sensitivity was achieved by R-OF (97%) and L-AF (75%). Highest specificity was achieved by L-OF (95%), L-AT (91%) followed by R-AC (84%). Best combination of sensitivity and specificity was achieved by L-AF (74%-79%), L-OF (56%-95%) and R-OF (97%-42%). Best combination of PPV and NPV was achieved by L-OF (90%-73%), LAT (83%-72%) and R-AC (77%-77%).

Conclusion: Visual rating scales can be a practical diagnostic tool in the characterization of patterns of atrophy in FTLD and may be used as an alternative to highly technical methods of quantification.

Keywords: FTD, bvFTD, SD, visual rating scales, semantic variant, global cortical atrophy.

Graphical Abstract
[1]
Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 2010; 24(5): 375-98.
[http://dx.doi.org/10.2165/11533100-000000000-00000] [PMID: 20369906]
[2]
Papageorgiou SG, Beratis IN, Horvath J, Herrmann FR, Bouras C, Kövari E. Amnesia in frontotemporal dementia: shedding light on the Geneva historical data. J Neurol 2016; 263(4): 657-64.
[http://dx.doi.org/10.1007/s00415-015-8019-6] [PMID: 26810723]
[3]
Rabinovici GD, Seeley WW, Kim EJ, et al. Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 2007; 22(6): 474-88.
[http://dx.doi.org/10.1177/1533317507308779] [PMID: 18166607]
[4]
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134(Pt 9): 2456-77.
[http://dx.doi.org/10.1093/brain/awr179] [PMID: 21810890]
[5]
Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76(11): 1006-14.
[http://dx.doi.org/10.1212/WNL.0b013e31821103e6] [PMID: 21325651]
[6]
Davies RR, Scahill VL, Graham A, Williams GB, Graham KS, Hodges JR. Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry. Neuroradiology 2009; 51(8): 491-503.
[http://dx.doi.org/10.1007/s00234-009-0521-z] [PMID: 19308367]
[7]
Scheltens P, Pasquier F, Weerts JG, Barkhof F, Leys D. Qualitative assessment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Eur Neurol 1997; 37(2): 95-9.
[http://dx.doi.org/10.1159/000117417] [PMID: 9058064]
[8]
Ferreira D, Cavallin L, Larsson EM, et al. AddNeuroMed consortium and the Alzheimer’s Disease Neuroimaging Initiative. Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer’s disease and mild cognitive impairment. J Intern Med 2015; 278(3): 277-90.
[http://dx.doi.org/10.1111/joim.12358] [PMID: 25752192]
[9]
Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55(10): 967-72.
[http://dx.doi.org/10.1136/jnnp.55.10.967] [PMID: 1431963]
[10]
Galton CJ, Gomez-Anson B, Antoun N, et al. Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 2001; 70(2): 165-73.
[http://dx.doi.org/10.1136/jnnp.70.2.165] [PMID: 11160463]
[11]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[12]
Koedam EL, Lehmann M, van der Flier WM, et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21(12): 2618-25.
[http://dx.doi.org/10.1007/s00330-011-2205-4] [PMID: 21805370]
[13]
Krainik A, Moreaud O, Cantin S, et al. Morphological subgroups in Alzheimer’s disease based on the precuneus atrophy. In: Proceedings of the European Congress of Radiology. 2011 March 3-7; Vienna, Austria.
[14]
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1): 159-74.
[http://dx.doi.org/10.2307/2529310] [PMID: 843571]
[15]
Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986; 21(9): 720-33.
[http://dx.doi.org/10.1097/00004424-198609000-00009] [PMID: 3095258]
[16]
Tsai RM, Boxer AL. Treatment of frontotemporal dementia. Curr Treat Options Neurol 2014; 16(11): 319.
[http://dx.doi.org/10.1007/s11940-014-0319-0] [PMID: 25238733]
[17]
Harper L, Barkhof F, Scheltens P, Schott JM, Fox NC. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014; 85(6): 692-8.
[http://dx.doi.org/10.1136/jnnp-2013-306285] [PMID: 24133287]
[18]
Gorno-Tempini ML, Rankin KP, Woolley JD, Rosen HJ, Phengrasamy L, Miller BL. Cognitive and behavioral profile in a case of right anterior temporal lobe neurodegeneration. Cortex 2004; 40(4-5): 631-44.
[http://dx.doi.org/10.1016/S0010-9452(08)70159-X] [PMID: 15505973]
[19]
Boxer AL, Rankin KP, Miller BL, et al. Cinguloparietal atrophy distinguishes Alzheimer disease from semantic dementia. Arch Neurol 2003; 60(7): 949-56.
[http://dx.doi.org/10.1001/archneur.60.7.949] [PMID: 12873851]
[20]
Mummery CJ, Patterson K, Price CJ, Ashburner J, Frackowiak RS, Hodges JR. A voxel-based morphometry study of semantic dementia:Rrelationship between temporal lobe atrophy and semantic memory. Ann Neurol 2000; 47(1): 36-45.
[http://dx.doi.org/10.1002/1531-8249(200001)47:1<36:AID-ANA8>3.0.CO;2-L] [PMID: 10632099]
[21]
Mummery CJ, Patterson K, Wise RJ, Vandenberghe R, Price CJ, Hodges JR. Disrupted temporal lobe connections in semantic dementia. Brain 1999; 122(Pt 1): 61-73.
[http://dx.doi.org/10.1093/brain/122.1.61] [PMID: 10050895]
[22]
Davies RR1. Graham KS, Xuereb JH, Williams GB, Hodges JR. The human perirhinal cortex and semantic memory. Eur J Neurosci 2004; 20: 2441-6.
[23]
Williams GB, Nestor PJ, Hodges JR. Neural correlates of semantic and behavioural deficits in frontotemporal dementia. Neuroimage 2005; 24(4): 1042-51.
[http://dx.doi.org/10.1016/j.neuroimage.2004.10.023] [PMID: 15670681]
[24]
Anderson SW, Damasio H, Damasio AR. A neural basis for collecting behaviour in humans. Brain 2005; 128(Pt 1): 201-12.
[http://dx.doi.org/10.1093/brain/awh329] [PMID: 15548551]
[25]
van de Pol LA, Hensel A, van der Flier WM, et al. Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2006; 77(4): 439-42.
[http://dx.doi.org/10.1136/jnnp.2005.075341] [PMID: 16306153]
[26]
Chan D, Fox NC, Scahill RI, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Ann Neurol 2001; 49(4): 433-42.
[http://dx.doi.org/10.1002/ana.92] [PMID: 11310620]
[27]
Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998; 51(6): 1546-54.
[http://dx.doi.org/10.1212/WNL.51.6.1546] [PMID: 9855500]
[28]
Madusanka N, Choi HK, So JH, Choi BK. Alzheimer’s disease classification based on multi-feature fusion. Curr Med Imaging 2019; 15(2): 161-9.
[http://dx.doi.org/10.2174/1573405614666181012102626] [PMID: 31975662]

© 2024 Bentham Science Publishers | Privacy Policy