Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

An Up-to-Date Review on Bio-Resource Therapeutics Effective against Bacterial Species Frequently Associated with Chronic Sinusitis and Tonsillitis

Author(s): Marina Kostić, Marija Ivanov, Snežana Sanković Babić, Jovana Petrović, Marina Soković and Ana Ćirić*

Volume 27, Issue 41, 2020

Page: [6892 - 6909] Pages: 18

DOI: 10.2174/0929867327666200505093143

Price: $65

Abstract

Upper respiratory tract infections include inflammations of the nose, sinuses (sinusitis), pharynx (tonsillitis, pharyngitis) and larynx (laryngitis) with bacteria or viruses as the main cause of these conditions. Due to their repetitive nature, chronic respiratory infections represent a global problem which is often a result of improper treatment. If not treated adequately, these conditions may have serious consequences. On the other hand, mis - and overuse of antibiotics has reduced their efficiency and accelerated the development of resistant bacterial strains, which further complicates the treatment of infections. This literature review will focus on current knowledge regarding medicinal plants and mushrooms which have been traditionally used in the treatment of infections caused by chronic sinusitis and tonsillitis commonly linked to bacteria - Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Fusobacterium nucleatum, Haemophilus influenzae and Moraxella catarrhalis. The present literature overview might be considered as a starting point for the development of novel, natural antimicrobial products with potential practical use in the treatment of chronic tonsillitis and sinusitis.

Keywords: Rhinosinusitis, respiratory tract, medicinal plants, mushrooms, extract, therapeutics.

[1]
Taverniti, V.; Dalla Via, A.; Minuzzo, M.; Del Bo’, C.; Riso, P.; Frøkiær, H.; Guglielmetti, S. In vitro assessment of the ability of probiotics, blueberry and food carbohydrates to prevent S. pyogenes adhesion on pharyngeal epithelium and modulate immune re-sponses. Food Funct., 2017, 8(10), 3601-3609.
[http://dx.doi.org/10.1039/C7FO00829E] [PMID: 28891576]
[2]
Dlugaszewska, J.; Leszczynska, M.; Lenkowski, M.; Tatarska, A.; Pastusiak, T.; Szyfter, W. The pathophysiological role of bacterial biofilms in chronic sinusitis. Eur. Arch. Otorhinolaryngol., 2016, 273(8), 1989-1994.
[http://dx.doi.org/10.1007/s00405-015-3650-5] [PMID: 26024693]
[3]
Sivasubramaniam, R.; Douglas, R. The microbiome and chronic rhinosinusitis. World J. Otorhinolaryngol Head Neck Surg., 2018, 4(3), 216-221.
[http://dx.doi.org/10.1016/j.wjorl.2018.08.004] [PMID: 30506054]
[4]
Bhattacharyya, N.; Villeneuve, S.; Joish, V.N.; Amand, C.; Mannent, L.; Amin, N.; Rowe, P.; Maroni, J.; Eckert, L.; Yang, T.; Khan, A. Cost burden and resource utilization in patients with chronic rhinosinusitis and nasal polyps. Laryngoscope, 2019, 129(9), 1969-1975.
[http://dx.doi.org/10.1002/lary.27852] [PMID: 30720213]
[5]
Fastenberg, J.H.; Hsueh, W.D.; Mustafa, A.; Akbar, N.A.; Abuzeid, W.M. Biofilms in chronic rhinosinusitis: Pathophysiology and therapeutic strategies. World J. Otorhinolaryngol Head Neck Surg., 2016, 2(4), 219-229.
[http://dx.doi.org/10.1016/j.wjorl.2016.03.002] [PMID: 29204570]
[6]
Wyler, B.; Mallon, W.K. Sinusitis update. Emerg. Med. Clin. North Am., 2019, 37(1), 41-54.
[http://dx.doi.org/10.1016/j.emc.2018.09.007] [PMID: 30454779]
[7]
Lam, K.; Schleimer, R.; Kern, R.C. The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr. Allergy Asthma Rep., 2015, 15(7), 41.
[http://dx.doi.org/10.1007/s11882-015-0540-2] [PMID: 26143392]
[8]
Koeller, K.; Herlemann, D.P.R.; Schuldt, T.; Ovari, A.; Guder, E.; Podbielski, A.; Kreikemeyer, B.; Olzowy, B. Microbiome and culture based analysis of chronic rhinosinusitis compared to healthy sinus mucosa. Front. Microbiol., 2018, 9(9), 643.
[http://dx.doi.org/10.3389/fmicb.2018.00643] [PMID: 29755418]
[9]
Boase, S.; Foreman, A.; Cleland, E.; Tan, L.; Melton-Kreft, R.; Pant, H.; Hu, F.Z.; Ehrlich, G.D.; Wormald, P.J. The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection. BMC Infect. Dis., 2013, 13, 210.
[http://dx.doi.org/10.1186/1471-2334-13-210] [PMID: 23656607]
[10]
Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc., 2018, 81(1), 7-11.
[http://dx.doi.org/10.1016/j.jcma.2017.07.012] [PMID: 29042186]
[11]
Drago, L.; Pignataro, L.; Torretta, S. Microbiological aspects of acute and chronic pediatric rhinosinusitis. J. Clin. Med., 2019, 8(2), 149.
[http://dx.doi.org/10.3390/jcm8020149] [PMID: 30696073]
[12]
Lee, K.; Pletcher, S.D.; Lynch, S.V.; Goldberg, A.N.; Cope, E.K. Heterogeneity of microbiota dysbiosis in chronic rhinosinusitis: potential clinical implications and microbial community mechanisms contributing to sinonasal inflammation. front. cell. Infect. Microbiol., 2018, 8(8), 168.
[http://dx.doi.org/10.3389/fcimb.2018.00168] [PMID: 29876323]
[13]
Masieri, S.; Trabattoni, D.; Incorvaia, C.; De Luca, M.C.; Dell’Albani, I.; Leo, G.; Frati, F. A role for Waldeyer’s ring in immunological response to allergens. Curr. Med. Res. Opin., 2014, 30(2), 203-205.
[http://dx.doi.org/10.1185/03007995.2013.855185] [PMID: 24127824]
[14]
Galindo Torres, B.P.; De Miguel García, F.; Whyte Orozco, J. Tonsillectomy in adults: Analysis of indications and complications. Auris Nasus Larynx, 2018, 45(3), 517-521.
[http://dx.doi.org/10.1016/j.anl.2017.08.012] [PMID: 28927847]
[15]
Mitchell, R.B.; Archer, S.M.; Ishman, S.L.; Rosenfeld, R.M.; Coles, S.; Finestone, S.A.; Friedman, N.R.; Giordano, T.; Hildrew, D.M.; Kim, T.W.; Lloyd, R.M.; Parikh, S.R.; Shulman, S.T.; Walner, D.L.; Walsh, S.A.; Nnacheta, L.C. Clinical practice guideline: Tonsillectomy in children (update)-executive summary. Otolaryngol. Head Neck Surg., 2019, 160(2), 187-205.
[http://dx.doi.org/10.1177/0194599818807917] [PMID: 30921525]
[16]
Liu, L.; Rodman, C.; Worobetz, N.E.; Johnson, J.; Elmaraghy, C.; Chiang, T. Topical biomaterials to prevent post-tonsillectomy hemorrhage. J. Otolaryngol. Head Neck Surg., 2019, 48(1), 45.
[http://dx.doi.org/10.1186/s40463-019-0368-1] [PMID: 31492172]
[17]
Chung, S.D.; Lin, H.C.; Wu, C.S.; Kao, L.T.; Hung, S.H. A tonsillectomy increased the risk of chronic rhinosinusitis among children: A three-year follow-up study. Int. J. Pediatr. Otorhinolaryngol., 2016, 91, 82-85.
[http://dx.doi.org/10.1016/j.ijporl.2016.09.038] [PMID: 27863647]
[18]
Hastan, D.; Fokkens, W.J.; Bachert, C.; Newson, R.B.; Bislimovska, J.; Bockelbrink, A.; Bousquet, P.J.; Brozek, G.; Bruno, A.; Dahlén, S.E.; Forsberg, B.; Gunnbjörnsdóttir, M.; Kasper, L.; Krämer, U.; Kowalski, M.L.; Lange, B.; Lundbäck, B.; Salagean, E.; Todo-Bom, A.; Tomassen, P.; Toskala, E.; van Drunen, C.M.; Bousquet, J.; Zuberbier, T.; Jarvis, D.; Burney, P. Chronic rhinosinusitis in European underestimated disease. A GA2LEN study. Allergy, 2011, 66(9), 1216-1223.
[http://dx.doi.org/10.1111/j.1398-9995.2011.02646.x] [PMID: 21605125]
[19]
Stevens, W.W.; Lee, R.J.; Schleimer, R.P.; Cohen, N.A. Chronic rhinosinusitis pathogenesis. J. Allergy Clin. Immunol., 2015, 136(6), 1442-1453.
[http://dx.doi.org/10.1016/j.jaci.2015.10.009] [PMID: 26654193]
[20]
Lee, W.H.; Kim, J-W.; Lim, J-S.; Kong, I.G.; Choi, H.G. Chronic rhinosinusitis increases the risk of hemorrhagic and ischemic stroke: A longitudinal follow-up study using a national sample cohort. PLoS One, 2018, 13(3)e0193886
[http://dx.doi.org/10.1371/journal.pone.0193886] [PMID: 29494700]
[21]
Brook, I. Microbiology of sinusitis. Proc. Am. Thorac. Soc., 2011, 8(1), 90-100.
[http://dx.doi.org/10.1513/pats.201006-038RN] [PMID: 21364226]
[22]
Kalaiarasi, R.; Subramanian, K.S.; Vijayakumar, C.; Venkataramanan, R. Microbiological profile of chronic tonsillitis in the pediatric age group. Cureus, 2018, 10(9)e3343
[http://dx.doi.org/10.7759/cureus.3343] [PMID: 30473976]
[23]
Suresh, M.K.; Biswas, R.; Biswas, L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int. J. Med. Microbiol., 2019, 309(1), 1-12.
[http://dx.doi.org/10.1016/j.ijmm.2018.11.002] [PMID: 30503373]
[24]
Kong, C.; Neoh, H.M.; Nathan, S. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins (Basel), 2016, 8(3)e72
[http://dx.doi.org/10.3390/toxins8030072]
[25]
Weiser, J.N.; Ferreira, D.M.; Paton, J.C. Streptococcus pneumoniae: transmission, colonization and invasion. Nat. Rev. Microbiol., 2018, 16(6), 355-367.
[http://dx.doi.org/10.1038/s41579-018-0001-8] [PMID: 29599457]
[26]
Brooks, L.R.K.; Mias, G.I. Streptococcus pneumoniae’s virulence and host immunity: aging, diagnostics, and prevention. Front. Immunol., 2018, 9(9), 1366.
[http://dx.doi.org/10.3389/fimmu.2018.01366] [PMID: 29988379]
[27]
Laabei, M.; Ermert, D. Catch me if you can: Streptococcus pyogenes complement evasion strategies. J. Innate Immun., 2019, 11(1), 3-12.
[http://dx.doi.org/10.1159/000492944] [PMID: 30269134]
[28]
Fiedler, T.; Köller, T.; Kreikemeyer, B. Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Front. Cell. Infect. Microbiol., 2015, 5(5), 15.
[http://dx.doi.org/10.3389/fcimb.2015.00015] [PMID: 25717441]
[29]
Brennan, C.A.; Garrett, W.S. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol., 2019, 17(3), 156-166.
[http://dx.doi.org/10.1038/s41579-018-0129-6] [PMID: 30546113]
[30]
Kabwe, M.; Brown, T.L.; Dashper, S.; Speirs, L.; Ku, H.; Petrovski, S.; Chan, H.T.; Lock, P.; Tucci, J. Genomic, morphological and functional characterisation of novel bacteriophage FNU1 capable of disrupting Fusobacterium nucleatum biofilms. Sci. Rep., 2019, 9(1), 9107.
[http://dx.doi.org/10.1038/s41598-019-45549-6] [PMID: 31235721]
[31]
Han, Y.W. Fusobacterium nucleatum: a commensal-turned pathogen. Curr. Opin. Microbiol., 2015, 23, 141-147.
[http://dx.doi.org/10.1016/j.mib.2014.11.013] [PMID: 25576662]
[32]
Sriram, K.B.; Cox, A.J.; Clancy, R.L.; Slack, M.P.E.; Cripps, A.W. Nontypeable Haemophilus influenzae and chronic obstructive pulmonary disease: a review for clinicians. Crit. Rev. Microbiol., 2018, 44(2), 125-142.
[http://dx.doi.org/10.1080/1040841X.2017.1329274] [PMID: 28539074]
[33]
Duell, B.L.; Su, Y.C.; Riesbeck, K. Host-pathogen interactions of nontypeable Haemophilus influenzae: from commensal to pathogen. FEBS Lett., 2016, 590(21), 3840-3853.
[http://dx.doi.org/10.1002/1873-3468.12351] [PMID: 27508518]
[34]
Blakeway, L.V.; Tan, A.; Peak, I.R.A.; Seib, K.L. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development. Microbiology, 2017, 163(10), 1371-1384.
[http://dx.doi.org/10.1099/mic.0.000523] [PMID: 28893369]
[35]
Božić, D.D.; Pavlović, B.; Milovanović, J.; Jotić, A.; Čolović, J.; Ćirković, I. Antibiofilm effects of amoxicillin-clavulanic acid and levofloxacin in patients with chronic rhinosinusitis with nasal polyposis. Eur. Arch. Otorhinolaryngol., 2018, 275(8), 2051-2059.
[http://dx.doi.org/10.1007/s00405-018-5049-6] [PMID: 29959565]
[36]
Tan, A.; Li, W.S.; Verderosa, A.D.; Blakeway, L.V.; Mubaiwa, T.; Totsika, M.; Seib, K.L. Moraxella catarrhalis NucM is an entry nuclease involved in extracellular DNA and RNA degradation, cell competence and biofilm scaffolding. Sci. Rep., 2019, 9(1), 2579.
[http://dx.doi.org/10.1038/s41598-019-39374-0] [PMID: 30796312]
[37]
Suh, J.D.; Kennedy, D.W. Treatment options for chronic rhinosinusitis. Proc. Am. Thorac. Soc., 2011, 8(1), 132-140.
[http://dx.doi.org/10.1513/pats.201003-028RN] [PMID: 21364231]
[38]
Han, J.K.; Kern, R.C. Topical therapies for management of chronic rhinosinusitis: steroid implants. Int. Forum Allergy Rhinol., 2019, 9(S1), S22-S26.
[http://dx.doi.org/10.1002/alr.22344] [PMID: 31087636]
[39]
Stelter, K. Tonsillitis and sore throat in children. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg., 2014, 13, Doc07.
[http://dx.doi.org/10.3205/cto000110] [PMID: 25587367]
[40]
Abu Bakar, M.; McKimm, J.; Haque, S.Z.; Majumder, M.A.A.; Haque, M. Chronic tonsillitis and biofilms: a brief overview of treatment modalities. J. Inflamm. Res., 2018, 11, 329-337.
[http://dx.doi.org/10.2147/JIR.S162486] [PMID: 30233227]
[41]
Wetmore, R.F. Surgical management of the tonsillectomy and adenoidectomy patient. World J Otorhinolaryngol Head Neck Surg, 2017, 3(3), 176-182.
[http://dx.doi.org/10.1016/j.wjorl.2017.01.001] [PMID: 29516064]
[42]
Kimondo, J.; Miaron, J.; Mutai, P.; Njogu, P. Ethnobotanical survey of food and medicinal plants of the Ilkisonko Maasai community in Kenya. J. Ethnopharmacol., 2015, 175(175), 463-469.
[http://dx.doi.org/10.1016/j.jep.2015.10.013] [PMID: 26456346]
[43]
Zhang, L.; Wang, Y.; Yang, D.; Zhang, C.; Zhang, N.; Li, M.; Liu, Y. Platycodon grandiflorus- an ethnopharmacological, phyto-chemical and pharmacological review. J. Ethnopharmacol., 2015, 164(164), 147-161.
[http://dx.doi.org/10.1016/j.jep.2015.01.052] [PMID: 25666431]
[44]
Agbor, M.A.; Naidoo, S. Ethnomedicinal Plants Used by Traditional Healers to Treat Oral Health Problems in Cameroon; Evid-Based Compl. Alt. Med., 2015, 2015649832
[http://dx.doi.org/10.1155/2015/649832] [PMID: 26495020]
[45]
Kamaneh, S.A-R.; Qaraaty, M.; Tabarrai, M.; Mazidi, M.; Mojahedi, M.; Azizkhani, M. Sinusitis and the related remedies in Persian medicine. Indian J. Tradit. Knowl., 2018, 17(4), 654-662.
[46]
Jiang, R.S.; Wu, S.H.; Tsai, C.C.; Li, Y.H.; Liang, K.L. Efficacy of Chinese herbal medicine compared with a macrolide in the treatment of chronic rhinosinusitis without nasal polyps. Am. J. Rhinol. Allergy, 2012, 26(4), 293-297.
[http://dx.doi.org/10.2500/ajra.2012.26.3778] [PMID: 22801017]
[47]
Li, J.; Zheng, C.; Lin, H.; Yang, C.; Gu, S.; Wang, Y.; Duan, H. Effect of Zhu-yuan decoction in patients with chronic rhinosinusitis after functional endoscopic sinus surgery. J. Tradit. Chin. Med., 2018, 38(1), 83-88.
[http://dx.doi.org/10.1016/j.jtcm.2018.02.003] [PMID: 32185955]
[48]
Yen, H.R.; Sun, M.F.; Lin, C.L.; Sung, F.C.; Wang, C.C.; Liang, K.L. Adjunctive traditional Chinese medicine therapy for patients with chronic rhinosinusitis: a population-based study. Int. Forum Allergy Rhinol., 2015, 5(3), 240-246.
[http://dx.doi.org/10.1002/alr.21446] [PMID: 25511322]
[49]
Griffin, A.S.; Cabot, P.; Wallwork, B.; Panizza, B. Alternative therapies for chronic rhinosinusitis: a review. Ear Nose Throat J., 2018, 97(3), E25-E33.
[PMID: 29554408]
[50]
Jin, A.J.; Chin, C.J. Complementary and alternative medicine in chronic rhinosinusitis: a systematic review and qualitative analysis. Am. J. Rhinol. Allergy, 2019, 33(2), 194-202.
[http://dx.doi.org/10.1177/1945892418813079] [PMID: 30482029]
[51]
Anushiravani, M.; Bakhshaee, M.; Taghipour, A.; Naghedi-Baghdar, H.; Farshchi, M.K.; Hoseini, S.S.; Mehri, M.R. A systematic review of randomized controlled trials with herbal medicine on chronic rhinosinusitis. Phytother. Res., 2018, 32(3), 395-401.
[http://dx.doi.org/10.1002/ptr.5968] [PMID: 29131443]
[52]
Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann. Intern. Med., 2009, 151(4)W65-94
[http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00136] [PMID: 19622512]
[53]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[54]
Lahlou, M. The success of natural products in drug discovery. Pharmacol. Pharm., 2013, 4, 17-31.
[http://dx.doi.org/10.4236/pp.2013.43A003]
[55]
Shobha, K.L.; Rao, A.S.; Pai, K.S.R.; Bhat, S. Antimicrobial activity of aqueous and ethanolic leaf extracts of Anacardium occidentale. Asian J. Pharm. Clinic. Res., 2018, 11(12), 474-476.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i12.29073]
[56]
Liu, B.; Wang, M.; Wang, X. Phytochemical analysis and antibacterial activity of methanolic extract of Bergenia purpurascens against common respiratory infection causing bacterial species in vitro and in neonatal rats. Microb. Pathog., 2018, 117, 315-319.
[http://dx.doi.org/10.1016/j.micpath.2018.01.032] [PMID: 29366865]
[57]
Chen, M.X.; Huo, J.M.; Hu, J.; Xu, Z.P.; Zhang, X. Amaryllidaceae alkaloids from Crinum latifolium with cytotoxic, antimicrobial, antioxidant, and anti-inflammatory activities. Fitoterapia, 2018, 130, 48-53.
[http://dx.doi.org/10.1016/j.fitote.2018.08.003] [PMID: 30114468]
[58]
Pallag, A.; Filip, G.A.; Olteanu, D.; Clichici, S.; Baldea, I.; Jurca, T.; Micle, O.; Vicaş, L.; Marian, E.; Soriţău, O.; Cenariu, M.; Mureşan, M. Equisetum arvense L. extract induces antibacterial activity and modulates oxidative stress, inflammation, and apoptosis in endothelial vascular cells exposed to hyperosmotic stress. Oxid. Med. Cell. Longev., 2018, 20183060525
[http://dx.doi.org/10.1155/2018/3060525] [PMID: 29636839]
[59]
Ortiz, S.; Lecsö-Bornet, M.; Bonnal, C.; Houze, S.; Michel, S.; Grougnet, R.; Boutefnouchet, S. Bioguided identification of triterpenoids and neolignans as bioactive compounds from anti-infectious medicinal plants of the Taira Atacama’s community (Calama, Chile). J. Ethnopharmacol., 2019, 231(231), 217-229.
[http://dx.doi.org/10.1016/j.jep.2018.10.029] [PMID: 30412750]
[60]
Chandra Shekar, B.R.; Nagarajappa, R.; Singh, R.; Thaku, R. Antimicrobial efficacy of the combinations of Acacia nilotica, Murraya koenigii L. sprengel, Eucalyptus hybrid and Psidium guajava on primary plaque colonizers. J. Basic Clin. Pharm., 2014, 5(4), 115-119.
[http://dx.doi.org/10.4103/0976-0105.141954] [PMID: 25316992]
[61]
Wahab, A.; Jan, S.A.; Rauf, A.; Rehman, Z.U.; Khan, Z.; Ahmed, A.; Syed, F.; Safi, S.Z.; Khan, H.; Imran, M. Phytochemical com-position, biological potential and enzyme inhibition activity of Scandix pecten-veneris L. J. Zhejiang Univ. Sci. B, 2018, 19(2), 120-129.
[http://dx.doi.org/10.1631/jzus.B1600443] [PMID: 29405040]
[62]
Begashaw, B.; Mishra, B.; Tsegaw, A.; Shewamene, Z. Methanol leaves extract Hibiscus micranthus Linn exhibited antibacterial and wound healing activities. BMC Complement. Altern. Med., 2017, 17, 337.
[http://dx.doi.org/10.1186/s12906-017-1841-x] [PMID: 28651570]
[63]
Desta, A.G.; Abdelwuhab, M.; Tadesse, W.T.; Gurmu, A.E. In vitro antibacterial activities of the leaf extracts of Aloe macrocarpa Tod (Aloaceae). Eur. J. Integr. Med., 2017, 12, 74-78.
[http://dx.doi.org/10.1016/j.eujim.2017.04.010]
[64]
Aparna, M.; Gayathri, V. Formulation of culinary plant medicine against bacterial skin infections caused by Staphylococcus sp. and Streptococcus sp. J. Pure Appl. Microbiol., 2018, 12(3), 1607-1615.
[http://dx.doi.org/10.22207/JPAM.12.3.67]
[65]
Gómez-Rivera, A.; González-Cortazar, M.; Herrera-Ruíz, M.; Zamilpa, A.; Rodríguez-López, V. Sessein and isosessein with anti-inflammatory, antibacterial and antioxidant activity isolated from Salvia sessei Benth. J. Ethnopharmacol., 2018, 217(217), 212-219.
[http://dx.doi.org/10.1016/j.jep.2018.02.012] [PMID: 29458147]
[66]
Alotaibi, S.M.; Saleem, M.S.; Al-Humaidi, J.G. Phytochemical contents and biological evaluation of Ruta chalepennsis L. growing in Saudi Arabia. Saudi Pharm. J., 2018, 26(4), 504-508.
[http://dx.doi.org/10.1016/j.jsps.2018.02.008] [PMID: 29844721]
[67]
Jæger, D.; Simpson, B.S.; Ndi, C.P.; Jäger, A.K.; Crocoll, C.; Møller, B.L.; Weinstein, P.; Semple, S.J. Biological activity and LC-MS/MS profiling of extracts from the Australian medicinal plant Acacia ligulata (Fabaceae). Nat. Prod. Res., 2018, 32(5), 576-581.
[http://dx.doi.org/10.1080/14786419.2017.1318383] [PMID: 28427277]
[68]
Lehbili, M.; Alabdul Magid, A.; Hubert, J.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Renault, J.H.; Nuzillard, J.M.; Morjani, H.; Abedini, A.; Gangloff, S.C.; Kabouche, Z. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia, 2018, 125, 41-48.
[http://dx.doi.org/10.1016/j.fitote.2017.12.018] [PMID: 29273413]
[69]
Basa’ar, O.; Fatema, S.; Alrabie, A.; Mohsin, M.; Farooqui, M. Supercritical carbon dioxide extraction of Triognella foenum graecum Linn seeds: Determination of bioactive compounds and pharmacological analysis. Asian Pac. J. Trop. Biomed., 2017, 7(12), 1085-1091.
[http://dx.doi.org/10.1016/j.apjtb.2017.10.010]
[70]
Otang-Mbeng, W.; Afolayan, A.J. Antimicrobial and antioxidant efficacy of Acokanthera oblongifolia Hochst. (Apocynaceae). Int. J. Pharmacol., 2017, 13(8), 1086-1091.
[http://dx.doi.org/10.3923/ijp.2017.1086.1091]
[71]
Smiljković, M.; Dias, M.I.; Stojković, D.; Barros, L.; Bukvički, D.; Ferreira, I.C.F.R.; Soković, M. Characterization of phenolic com-pounds in tincture of edible Nepeta nuda: development of antimicrobial mouthwash. Food Funct., 2018, 9(10), 5417-5425.
[http://dx.doi.org/10.1039/C8FO01466c ] [PMID: 30280149]
[72]
Razafintsalama, V.E.; Rasoarivelo, S.R.; Randriamialinoro, F.; Ranarivelo, L.; Rakotonandrasana, S.R.; Petit, T.; Sarter, S. Antibacterial activities of fourteen medicinal plants from the endemic plant diversity of Madagascar. S. Afr. J. Bot., 2017, 112, 303-306.
[http://dx.doi.org/10.1016/j.sajb.2017.06.006]
[73]
Sagbo, I.J.; Afolayan, A.J.; Bradley, G. Antioxidant, antibacterial and phytochemical properties of two medicinal plants against the wound infecting bacteria. Asian Pac. J. Trop. Biomed., 2017, 7, 817-825.
[http://dx.doi.org/10.1016/j.apjtb.2017.08.009]
[74]
Sequeda-Castañeda, L.G.; Muñoz-Realpe, C.C.; Celis-Zambrano, C.A.; Gutiérrez-Prieto, S.J.; Luengas-Caicedo, P.E.; Gamboa, F. Preliminary phytochemical analysis of Berberis goudotii Triana & Planch. ex Wedd. (Berberidaceae) with anticariogenic and anti-periodontal activities. Sci. Pharm., 2019, 87, 2.
[http://dx.doi.org/10.3390/scipharm87010002]
[75]
Hickl, J.; Argyropoulou, A.; Sakavitsi, M.E.; Halabalaki, M.; Al-Ahmad, A.; Hellwig, E.; Aligiannis, N.; Skaltsounis, A.L.; Wittmer, A.; Vach, K.; Karygianni, L. Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. PLoS One, 2018, 13(12)e0207574
[http://dx.doi.org/10.1371/journal.pone.0207574] [PMID: 30540782]
[76]
Amin, A.; Radji, M.; Mun’im, A.; Rahardjo, A.; Suryadi, H. Antimicrobial activity of ethyl acetate fraction from Stelechocarpus burahol fruit against oral bacteria and total flavonoids content. Journal of Young Pharmacists, 2018, 10(2s), 97-100.
[http://dx.doi.org/10.5530/jyp.2018.2s.19]
[77]
Ben Lagha, A.; Haas, B.; Grenier, D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci. Rep., 2017, 7(7), 44815.
[http://dx.doi.org/10.1038/srep44815] [PMID: 28322293]
[78]
Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Crişan, G.; Rohn, S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: phytochemical characterization, biological profile, and computational studies. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 153-168.
[http://dx.doi.org/10.1080/14756366.2016.1243535] [PMID: 28095717]
[79]
Al-Saeedi, A.H.; Al-Ghafri, M.T.H.; Hossain, M.A. Brine shrimp toxicity of various polarities leaves and fruits crude fractions of Ziziphus jujuba native to Oman and their antimicrobial potency. Sustain. Chem. Pharm, 2017, 5, 122-126.
[http://dx.doi.org/10.1016/j.scp.2017.03.003]
[80]
Baldemir, A.; Gökşen, N.; Ildız, N.; Karatoprak, G.Ş.; Koşar, M. Phytochemical profile and biological activities of Helianthemum canum l. Baumg. from Turkey. Chem. Biodivers., 2017, 14(7)
[http://dx.doi.org/10.1002/cbdv.201700052] [PMID: 28306206]
[81]
Wajima, T.; Anzai, Y.; Yamada, T.; Ikoshi, H.; Noguchi, N. Oldenlandia diffusa extract inhibits biofilm formation by Haemophilus influenzae clinical isolates. PLoS One, 2016, 11(11)e0167335
[http://dx.doi.org/10.1371/journal.pone.0167335] [PMID: 27902758]
[82]
Siwe-Noundou, X.; Ndinteh, D.T.; Olivier, D.K.; Mnkandhla, D.; Isaacs, M.; Muganza, F.M.; Mbafor, J.T.; Van Vuuren, S.F.; Patnala, S.; Hoppe, H.; Krause, R.W.M. Biological activity of plant extracts and isolated compounds from Alchornea laxiflora: Anti-HIV, antibacterial and cytotoxicity evaluation. S. Afr. J. Bot., 2019, 122, 498-503.
[http://dx.doi.org/10.1016/j.sajb.2018.08.010 ]
[83]
Orbán-Gyapai, O.; Liktor-Busa, E.; Kúsz, N.; Stefkó, D.; Urbán, E.; Hohmann, J.; Vasas, A. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus. Fitoterapia, 2017, 118, 101-106.
[http://dx.doi.org/10.1016/j.fitote.2017.03.009] [PMID: 28300698]
[84]
Vollár, M.; Gyovai, A.; Szűcs, P.; Zupkó, I.; Marschall, M.; Csupor-Löffler, B.; Bérdi, P.; Vecsernyés, A.; Csorba, A.; Liktor-Busa, E.; Urbán, E.; Csupor, D. Antiproliferative and antimicrobial activities of selected bryophytes. Molecules, 2018, 23(7)E1520
[http://dx.doi.org/10.3390/molecules23071520] [PMID: 29937511]
[85]
Ren, G.; Xue, P.; Sun, X.; Zhao, G. Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena Regal tea. BMC Complement. Altern. Med., 2018, 18(1), 307.
[http://dx.doi.org/10.1186/s12906-018-2374-7 ] [PMID: 30458808]
[86]
Miquel, M.G. Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules, 2010, 15(12), 9252-9287.
[http://dx.doi.org/10.3390/molecules15129252] [PMID: 21160452]
[87]
Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J. Antibacterial effects of the essential oils of commonly con-sumed medicinal herbs using an in vitro model. Molecules, 2010, 15(11), 7532-7546.
[http://dx.doi.org/10.3390/molecules15117532 ] [PMID: 21030907 ]
[88]
Karaca, N.; Demirci, B.; Demirci, F. Evaluation of Lavandula stoechas L. subsp. stoechas L., Mentha spicata L. subsp. spicata L. Essential oils and their main components against sinusitis pathogens. Z. Naturforsch. C, 2018, 73(8-10), 353-360.
[http://dx.doi.org/10.1515/znc-2017-0150] [PMID: 29485971 ]
[89]
Houdkova, M.; Urbanova, K.; Doskocil, I.; Rondevaldova, J.; Novy, P.; Nguon, S.; Chrun, R.; Kokoska, L. In vitro growth-inhibitory effect of Cambodian essential oils against pneumonia causing bacteria in liquid and vapour phase and their toxicity to lung fibroblasts. S. Afr. J. Bot., 2018, 118, 85-97.
[http://dx.doi.org/10.1016/j.sajb.2018.06.005]
[90]
Ghafari, O.; Sharifi, A.; Ahmadi, A.; Nayeri Fasaei, B. Antibacterial and anti-PmrA activity of plant essential oils against fluoroquin-olone-resistant Streptococcus pneumoniae clinical isolates. Lett. Appl. Microbiol., 2018, 67(6), 564-569.
[http://dx.doi.org/10.1111/lam.13050] [PMID: 30007082]
[91]
Sharifi, A.; Ahmadi, A.; Mohammadzadeh, A. Streptococcus pneumoniae quorum sensing and biofilm formation are affected by Thymus daenensis, Satureja hortensis, and Origanum vulgare essential oils. Acta Microbiol. Immunol. Hung., 2018, 65(3), 345-359.
[http://dx.doi.org/10.1556/030.65.2018.013] [PMID: 29471691]
[92]
Demirci, F.; Karaca, N.; Tekin, M.; Demirci, B. Anti-inflammatory and antibacterial evaluation of Thymus sipyleus Boiss. subsp. sipyleus var. sipyleus essential oil against rhinosinusitis pathogens. Microb. Pathog., 2018, 122, 117-121.
[http://dx.doi.org/10.1016/j.micpath.2018.06.025] [PMID: 29908309]
[93]
Ács, K.; Balázs, V.L.; Kocsis, B.; Bencsik, T.; Böszörményi, A.; Horváth, G. Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens. BMC Complement. Altern. Med., 2018, 18(1), 227.
[http://dx.doi.org/10.1186/s12906-018-2291-9] [PMID: 30053847]
[94]
Wijesundara, N.M.; Rupasinghe, H.P.V. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes. Microb. Pathog., 2018, 117, 118-127.
[http://dx.doi.org/10.1016/j.micpath.2018.02.026] [PMID: 29452197]
[95]
Huang, J.; Qian, C.; Xu, H.; Huang, Y. Antibacterial activity of Artemisia asiatica essential oil against some common respiratory infection causing bacterial strains and its mechanism of action in Haemophilus influenzae. Microb. Pathog., 2018, 114, 470-475.
[http://dx.doi.org/10.1016/j.micpath.2017.12.032] [PMID: 29241769]
[96]
Azizan, N.; Mohd Said, S.; Zainal Abidin, Z.; Jantan, I. Composition and antibacterial activity of the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack against pathogenic oral bacteria. Molecules, 2017, 22(12), 2135.
[http://dx.doi.org/10.3390/molecules22122135] [PMID: 29206142]
[97]
Weli, A.; Al-Kaabi, A.; Al-Sabahi, J.; Said, S.; Hossain, M.A.; Al-Riyami, S. Chemical composition and biological activities of the essential oils of Psidium guajava leaf. J. King Saad. Uni. Sci., 2019, 31(4), 993-998.
[http://dx.doi.org/10.1016/j.jksus.2018.07.021]
[98]
Ghaderi, L.; Moghimi, R.; Aliahmadi, A.; McClements, D.J.; Rafati, H. Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich Thymus daenensis essential oil. J. Appl. Microbiol., 2017, 123(4), 832-840.
[http://dx.doi.org/10.1111/jam.13541] [PMID: 28714250]
[99]
Krishnamoorthy, R.; Athinarayanan, J.; Periasamy, V.S.; Adisa, A.R.; Al-Shuniaber, M.A.; Gassem, M.A.; Alshatwi, A.A. Antimi-crobial activity of nanoemulsion on drug-resistant bacterial pathogens. Microb. Pathog., 2018, 120, 85-96.
[http://dx.doi.org/10.1016/j.micpath.2018.04.035] [PMID: 29684541]
[100]
Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen, 2017, 6(4)e459
[http://dx.doi.org/10.1002/mbo3.459] [PMID: 28296357]
[101]
Grădinaru, A.C.; Trifan, A.; Şpac, A.; Brebu, M.; Miron, A.; Aprotosoaie, A.C. Antibacterial activity of traditional spices against lower respiratory tract pathogens: combinatorial effects of Trachyspermum ammi essential oil with conventional antibiotics. Lett. Appl. Microbiol., 2018, 67(5), 449-457.
[http://dx.doi.org/10.1111/lam.13069] [PMID: 30187508]
[102]
Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: improving human health and promoting quality life. Int. J. Microbiol., 2015, •••2015376387
[http://dx.doi.org/10.1155/2015/376387] [PMID: 25685150]
[103]
Soković, M.; Ćirić, A.; Glamočlija, J.; Stojković, D. The bioactive properties of mushrooms.In: Chapter 4, Book: Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Isabel, ; C. F. R., Ferreira; Patricia, Morales; Lillian, Barros, Eds.; , 2017, pp. 83-122.
[http://dx.doi.org/10.1002/9781118944653.ch4]
[104]
Rathee, S.; Rathee, D.; Rathee, D.; Kumar, V.; Rathee, P. Mushrooms as therapeutic agents. Rev. Bras. Farmacogn., 2012, 22, 459-474.
[http://dx.doi.org/10.1590/S0102-695X2011005000195]
[105]
Ćirić, A.; Petrović, J.; Glamočlija, J.; Smiljković, M.; Nikolić, M.; Stojković, D.; Soković, M. Natural products as biofilm formation antagonists and regulators of quorum sensing functions: a comprehensive review update and future trends. S. Afr. J. Bot., 2019, 120, 65-80.
[http://dx.doi.org/10.1016/J.SAJB.2018.09.010]
[106]
Stojković, D.; Smiljković, M.; Ćirić, A.; Glamočlija, J.; van Griensven, L.; Ferreira, I.C.F.R.; Soković, M. An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. S. Afr. J. Bot., 2019, 120, 100-103.
[http://dx.doi.org/10.1016/j.sajb.2018.01.007]
[107]
Younis, A.M.; Yosri, M.; Stewart, J.K. In vitro evaluation of pleiotropic properties of wild mushroom Laetiporus sulphureus. Ann. Agric. Sci., 2019, 64, 79-87.
[http://dx.doi.org/10.1016/j.aoas.2019.05.001]
[108]
Sevindik, M. Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus. Adv. Pharmacol. Sci., 2018, 20181718025
[http://dx.doi.org/10.1155/2018/1718025] [PMID: 30515206]
[109]
Shameem, N.; Kamili, A.N.; Ahmad, M.; Masoodi, F.A.; Parray, J.A. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya. Microb. Pathog., 2017, 105, 356-360.
[http://dx.doi.org/10.1016/j.micpath.2017.03.005] [PMID: 28286150]
[110]
Kostić, M.; Smiljković, M.; Petrović, J.; Glamočlija, J.; Barros, L.; Ferreira, I.C.F.R.; Ćirić, A.; Soković, M. Chemical, nutritive com-position and a wide range of bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.). Kummer. Food Funct., 2017, 8(9), 3239-3249.
[http://dx.doi.org/10.1039/C7FO00887B] [PMID: 28812768]
[111]
Chaiharn, M.; Phutdhawong, W.S.; Amornlerdpison, D.; Phutdhawong, W. Antibacterial, antioxidant properties and bioactive com-pounds of thai cultivated mushroom extracts against food-borne bacterial strains. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2018, 45(4), 1713-1727.
[112]
Khadhri, A.; Aouadhi, C.; Aschi-Smiti, S. Screening of bioactive compounds of medicinal mushrooms collected on Tunisian territory. Int. J. Med. Mushrooms, 2017, 19(2), 127-135.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i2.40] [PMID: 28436321]
[113]
Bach, F.; Zielinski, A.A.F.; Helm, C.V.; Maciel, G.M.; Pedro, A.C.; Stafussa, A.P.; Ávila, S.; Haminiuk, C.W.I. Bio compounds of edible mushrooms: in vitro antioxidant and antimicrobial activities. LWT, 2019, 107, 214-220.
[http://dx.doi.org/10.1016/j.lwt.2019.03.017]
[114]
Khatua, S.; Acharya, K. Functional ingredients and medicinal prospects of ethanol extract from Macrocybe lobayensis. Pharmacogn. J., 2018, 10(6), 1154-1158.
[http://dx.doi.org/10.5530/pj.2018.6.197]
[115]
Appiah, T.; Boakye, Y.D.; Agyare, C. Antimicrobial activities and time-kill kinetics of extracts of selected ghanaian mushroom. Evid. Based Complement. Alternat. Med., 2017, 20174534350
[http://dx.doi.org/10.1155/2017/4534350] [PMID: 29234399]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy