Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanotherapeutics and Nanotheragnostics for Cancers: Properties, Pharmacokinetics, Biopharmaceutics, and Biosafety

Author(s): Margreet Morsink, Lucia Parente, Fernanda Silva, Alexandra Abrantes, Ana Ramos, Inês Primo, Niels Willemen, Elena Sanchez-Lopez, Patricia Severino and Eliana B. Souto*

Volume 28, Issue 2, 2022

Published on: 03 August, 2021

Page: [104 - 115] Pages: 12

DOI: 10.2174/1381612827666210804102645

Price: $65

Abstract

With the increasing worldwide rate of chronic diseases, such as cancer, the development of novel techniques to improve the efficacy of therapeutic agents is highly demanded. Nanoparticles are especially well suited to encapsulate drugs and other therapeutic agents, bringing additional advantages, such as less frequent dosage requirements, reduced side effects due to specific targeting, and therefore increased patient compliance. However, with the increasing use of nanoparticles and their recent launch on the pharmaceutical market, it is important to achieve high-quality control of these advanced systems. In this review, we discuss the properties of different nanoparticles, the pharmacokinetics, the biosafety issues of concern, and conclude with novel nanotherapeutics and nanotheragnostics for cancer drug delivery.

Keywords: Nanomedicine, nanotheragnostics, advanced drug delivery, nanotherapeutics, pharmacokinetics, drug nanoparticles, cancer drugdelivery, cancer nanotheragnostics, nanosafety.

Next »
[1]
Satalkar P, Elger BS, Shaw DM. Defining Nano, Nanotechnology and Nanomedicine: Why should it matter? Sci Eng Ethics 2016; 22(5): 1255-76.
[http://dx.doi.org/10.1007/s11948-015-9705-6]
[2]
Di Martino P. Nano-medicine improving the bioavailability of small molecules for the prevention of neurodegenerative diseases. Curr Pharm Des 2017; 23(13): 1897-908.
[http://dx.doi.org/10.2174/1381612822666161227154447]
[3]
Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 2008; 5(4): 496-504.
[http://dx.doi.org/10.1021/mp800049w] [PMID: 18611037]
[4]
Souto EB, Müller RH. Lipid nanoparticles: Effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol 2010; 197: 115-41.
[http://dx.doi.org/10.1007/978-3-642-00477-3_4]
[5]
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem 2018; 6: 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[6]
Tinkle S, McNeil SE, Mühlebach S, et al. Nanomedicines: Addressing the scientific and regulatory gap. Ann N Y Acad Sci 2014; 1313(1): 35-56.
[http://dx.doi.org/10.1111/nyas.12403] [PMID: 24673240]
[7]
Bleeker EA. Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 2012; 65(1): 119-25.
[http://dx.doi.org/10.1016/j.yrtph.2012.11.007]
[8]
Zielińska A, Costa B, Ferreira MV, et al. Nanotoxicology and nanosafety: Safety-by-design and testing at a glance. Int J Environ Res Public Health 2020; 17(13): 4657.
[http://dx.doi.org/10.3390/ijerph17134657] [PMID: 32605255]
[9]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[10]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[11]
Rane YM, Souto EB. Perspectives in nanomedicine-based research towards cancer therapies. Curr Nanosci 2011; 7(2): 142-52.
[http://dx.doi.org/10.2174/157341311794653640]
[12]
Severino P. Advances in nanobiomaterials for oncology nanomedicine 2016.
[http://dx.doi.org/10.1016/B978-0-323-42863-7.00004-9]
[13]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71-1.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[14]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[15]
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[16]
Souto EB, Doktorovová S. Solid lipid nanoparticle formulations. pharmacokinetic and biopharmaceutical aspects in drug delivery. Methods Enzymol 2009; 464: 105-29.
[http://dx.doi.org/10.1016/S0076-6879(09)64006-4]
[17]
Severino P, Andreani T, Jäger A, et al. Solid lipid nanoparticles for hydrophilic biotech drugs: optimization and cell viability studies (Caco-2 & HEPG-2 cell lines). Eur J Med Chem 2014; 81: 28-34.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.084] [PMID: 24819957]
[18]
Souto EB, Baldim I, Oliveira WP, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv 2020; 17(3): 357-77.
[http://dx.doi.org/10.1080/17425247.2020.1727883] [PMID: 32064958]
[19]
Andrade LNC, Mariana SS, Costa , Salvana P M, et al. Perillyl alcohol in Solid Lipid Nanoparticles (SLN-PA): Cytotoxicity and antitumor potential in sarcoma 180 mice model. Precis Nanomed 2020; 3(5): 686-98.
[20]
Chen X, Schluesener HJ. Nanosilver: A nanoproduct in medical application. Toxicol Lett 2008; 176(1): 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2007.10.004] [PMID: 18022772]
[21]
Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009; 38(6): 1759-82.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[22]
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2007; 2(5): 681-93.
[http://dx.doi.org/10.2217/17435889.2.5.681] [PMID: 17976030]
[23]
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012; 24(12): 1504-34.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[24]
Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev 2015; 44(1): 362-81.
[http://dx.doi.org/10.1039/C4CS00269E] [PMID: 25316556]
[25]
Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology 2010; 151(2): 458-65.
[http://dx.doi.org/10.1210/en.2009-1082] [PMID: 20016026]
[26]
Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release 2015; 220(Pt A): 141-8.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.069] [PMID: 26437263]
[27]
Suk JS. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[28]
Kumari A, Singla R, Guliani A, Yadav SK. Nanoencapsulation for drug delivery. EXCLI J 2014; 13: 265-86.
[PMID: 26417260]
[29]
Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[30]
Severino P. Polymers for drug delivery systems formulations. Polímeros 2011; 21(5): 361-8.
[http://dx.doi.org/10.1590/S0104-14282011005000061]
[31]
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2014; 10(2): 321-32.
[http://dx.doi.org/10.4161/hv.26796] [PMID: 24128651]
[32]
Alves TFR. Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations. Cosmetics 2020; 7(4): 75.
[http://dx.doi.org/10.3390/cosmetics7040075]
[33]
Grottkau BE. Polymeric nanoparticles for a drug delivery system. Curr Drug Metab 2013; 14(8): 840-6.
[http://dx.doi.org/10.2174/138920021131400105]
[34]
Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle characterization: what to measure? Adv Mater 2019; 31(32)e1901556
[http://dx.doi.org/10.1002/adma.201901556] [PMID: 31148285]
[35]
Morais RP, Novais GB, Sangenito LS, et al. Naringenin-functionalized multi-walled carbon nanotubes: A potential approach for site-specific remote-controlled anticancer delivery for the treatment of lung cancer cells. Int J Mol Sci 2020; 21(12): 4557.
[http://dx.doi.org/10.3390/ijms21124557] [PMID: 32604979]
[36]
Zielińska A, Alves H, Marques V, et al. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects. Medicina (Kaunas) 2020; 56(7): 336.
[http://dx.doi.org/10.3390/medicina56070336] [PMID: 32635279]
[37]
Patel M, Souto EB, Singh KK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin Drug Deliv 2013; 10(7): 889-905.
[http://dx.doi.org/10.1517/17425247.2013.784742] [PMID: 23550609]
[38]
Teixeira MC, Martins-Gomes C, Singh KK, Veiga FJ, Silva AM, Souto EB. Targeting of lipid/polymeric (hybrid) nanoparticles to the brain for the treatment of degenerative diseases. In: In book: Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. 2018; pp. 147-68.
[39]
Souto EB, Doktorovova S, Boonme P. Lipid-based colloidal systems (nanoparticles, microemulsions) for drug delivery to the skin: Materials and end-product formulations. J Drug Deliv Sci Technol 2011; 21(1): 43-54.
[http://dx.doi.org/10.1016/S1773-2247(11)50005-X]
[40]
Souto EB, Nayak AP, Murthy RSR. Lipid nanoemulsions for anti-cancer drug therapy. Pharmazie 2011; 66(7): 473-8.
[PMID: 21812320]
[41]
Mozaffari S, Li W, Thompson C, et al. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics. Nanoscale 2017; 9(36): 13772-85.
[http://dx.doi.org/10.1039/C7NR04101B] [PMID: 28885633]
[42]
Cauda V, Schlossbauer A, Bein T. Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater 2010; 132(1): 60-71.
[http://dx.doi.org/10.1016/j.micromeso.2009.11.015]
[43]
Lazzari S, Moscatelli D, Codari F, Salmona M, Morbidelli M, Diomede L. Colloidal stability of polymeric nanoparticles in biological fluids. J Nanopart Res 2012; 14(6): 920.
[http://dx.doi.org/10.1007/s11051-012-0920-7] [PMID: 23162376]
[44]
Lu Z, Yin Y. Colloidal nanoparticle clusters: functional materials by design. Chem Soc Rev 2012; 41(21): 6874-87.
[http://dx.doi.org/10.1039/c2cs35197h] [PMID: 22868949]
[45]
Ballard N, Law AD, Bon SAF. Colloidal particles at fluid interfaces: behaviour of isolated particles. Soft Matter 2019; 15(6): 1186-99.
[http://dx.doi.org/10.1039/C8SM02048E] [PMID: 30601564]
[46]
Kister T, Monego D, Mulvaney P, Widmer-Cooper A, Kraus T. Colloidal stability of apolar nanoparticles: the role of particle size and ligand shell structure. ACS Nano 2018; 12(6): 5969-77.
[http://dx.doi.org/10.1021/acsnano.8b02202] [PMID: 29842786]
[47]
Lim H, Jo M, Ban C, Choi YJ. Interfacial and colloidal characterization of oil-in-water emulsions stabilized by interface-tunable solid lipid nanoparticles. Food Chem 2020; 306125619
[http://dx.doi.org/10.1016/j.foodchem.2019.125619] [PMID: 31606630]
[48]
Pfeiffer C, Rehbock C, Hühn D, et al. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface 2014; 11(96)20130931
[http://dx.doi.org/10.1098/rsif.2013.0931] [PMID: 24759541]
[49]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[50]
Yang W. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustainable Materials and Technologies 2019; 22e00109
[http://dx.doi.org/10.1016/j.susmat.2019.e00109]
[51]
Yue J, Feliciano TJ, Li W, Lee A, Odom TW. Gold nanoparticle size and shape effects on cellular uptake and intracellular distribution of siRNA nanoconstructs. Bioconjug Chem 2017; 28(6): 1791-800.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00252] [PMID: 28574255]
[52]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[53]
Hong X, Zhong X, Du G, et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci Adv 2020; 6(25)eaaz4462
[http://dx.doi.org/10.1126/sciadv.aaz4462] [PMID: 32596445]
[54]
Peltonen L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev 2018; 131: 101-15.
[http://dx.doi.org/10.1016/j.addr.2018.06.009] [PMID: 29920294]
[55]
Kozaki M, Kobayashi SI, Goda Y, Okuda H, Sakai-Kato K. Evaluating the properties of poly(lactic-co-glycolic acid) nanoparticle formulations encapsulating a hydrophobic drug by using the quality by design approach. Chem Pharm Bull (Tokyo) 2017; 65(3): 218-28.
[http://dx.doi.org/10.1248/cpb.c16-00415] [PMID: 28250343]
[56]
Shirsat AE, Chitlange SS. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles. J Adv Pharm Technol Res 2015; 6(3): 88-96.
[http://dx.doi.org/10.4103/2231-4040.157983] [PMID: 26317071]
[57]
Ariga K, Hill JP, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 2007; 9(19): 2319-40.
[http://dx.doi.org/10.1039/b700410a] [PMID: 17492095]
[58]
Tenzer S, Docter D, Kuharev J, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013; 8(10): 772-81.
[http://dx.doi.org/10.1038/nnano.2013.181] [PMID: 24056901]
[59]
Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today 2008; 3(1-2): 40-7.
[http://dx.doi.org/10.1016/S1748-0132(08)70014-8]
[60]
Morsink MAJ, Willemen NGA, Leijten J, Bansal R, Shin SR. Immune organs and immune cells on a chip: an overview of biomedical applications. Micromachines (Basel) 2020; 11(9): 849.
[http://dx.doi.org/10.3390/mi11090849] [PMID: 32932680]
[61]
De Jong WH, Borm PJA. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[62]
Choi YH, Han H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 2018; 48(1): 43-60.
[http://dx.doi.org/10.1007/s40005-017-0370-4] [PMID: 30546919]
[63]
Gokce EH, Ozyazici M, Souto EB. Nanoparticulate strategies for effective delivery of poorly soluble therapeutics. Ther Deliv 2010; 1(1): 149-67.
[http://dx.doi.org/10.4155/tde.10.4] [PMID: 22816125]
[64]
Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 2017; 68: 1-11.
[http://dx.doi.org/10.1016/j.plipres.2017.07.001] [PMID: 28778472]
[65]
Onoue S, Yamada S, Chan H-K. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 2014; 9: 1025-37.
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[66]
Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 2012; 134(4): 2139-47.
[http://dx.doi.org/10.1021/ja2084338] [PMID: 22191645]
[67]
Catalan-Figueroa J, Palma-Florez S, Alvarez G, Fritz HF, Jara MO, Morales JO. Nanomedicine and nanotoxicology: the pros and cons for neurodegeneration and brain cancer. Nanomedicine (Lond) 2016; 11(2): 171-87.
[http://dx.doi.org/10.2217/nnm.15.189] [PMID: 26653284]
[68]
Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010; 7(11): 653-64.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[69]
Araújo J, Garcia ML, Mallandrich M, Souto EB, Calpena AC. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): In Vitro and ex vivo studies. Nanomedicine 2012; 8(6): 1034-41.
[http://dx.doi.org/10.1016/j.nano.2011.10.015] [PMID: 22115598]
[70]
Hasan M, Elkhoury K, Kahn CJF, Arab-Tehrany E, Linder M. Preparation, characterization, and release kinetics of chitosan-coated nanoliposomes encapsulating curcumin in simulated environments. Molecules 2019; 24(10)E2023
[http://dx.doi.org/10.3390/molecules24102023] [PMID: 31137865]
[71]
Zhou Y, He C, Chen K, et al. A new method for evaluating actual drug release kinetics of nanoparticles inside dialysis devices via numerical deconvolution. J Control Release 2016; 243: 11-20.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.031] [PMID: 27693750]
[72]
Ngan YH, Gupta M. A comparison between liposomal and nonliposomal formulations of doxorubicin in the treatment of cancer: An updated review. Arch Pharm Pract (Mumbai) 2016; 7: 1.
[http://dx.doi.org/10.4103/2045-080X.174930]
[73]
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010; 145(3): 182-95.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036] [PMID: 20226220]
[74]
Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005; 21(23): 10644-54.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[75]
Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006; 6(6): 1121-5.
[http://dx.doi.org/10.1021/nl060162e] [PMID: 16771565]
[76]
Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of In Vitro data. Eur J Pharm Biopharm 2014; 87(1): 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.005] [PMID: 24530885]
[77]
Fangueiro JF, Gonzalez-Mira E, Martins-Lopes P, et al. A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol 2013; 18(3): 545-9.
[http://dx.doi.org/10.3109/10837450.2011.591804] [PMID: 21711084]
[78]
Landsiedel R, Fabian E, Ma-Hock L, et al. Toxico-/biokinetics of nanomaterials. Arch Toxicol 2012; 86(7): 1021-60.
[http://dx.doi.org/10.1007/s00204-012-0858-7] [PMID: 22576463]
[79]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[80]
Tenzer S, Docter D, Rosfa S, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis. ACS Nano 2011; 5(9): 7155-67.
[http://dx.doi.org/10.1021/nn201950e] [PMID: 21866933]
[81]
Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 2008; 3(3): 145-50.
[http://dx.doi.org/10.1038/nnano.2008.30] [PMID: 18654486]
[82]
Li L, Liu T, Fu C, Tan L, Meng X, Liu H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine 2015; 11(8): 1915-24.
[http://dx.doi.org/10.1016/j.nano.2015.07.004] [PMID: 26238077]
[83]
Yan L, Zhao F, Li S, Hu Z, Zhao Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 2011; 3(2): 362-82.
[http://dx.doi.org/10.1039/C0NR00647E] [PMID: 21157592]
[84]
Fadeel B, Garcia-Bennett AE. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 2010; 62(3): 362-74.
[http://dx.doi.org/10.1016/j.addr.2009.11.008] [PMID: 19900497]
[85]
Fischer HC, Chan WC. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 2007; 18(6): 565-71.
[http://dx.doi.org/10.1016/j.copbio.2007.11.008] [PMID: 18160274]
[86]
Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 2014; 22(1): 64-75.
[http://dx.doi.org/10.1016/j.jfda.2014.01.005] [PMID: 24673904]
[87]
Kettiger H, Schipanski A, Wick P, Huwyler J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 2013; 8: 3255-69.
[PMID: 24023514]
[88]
Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 2006; 103(9): 3357-62.
[http://dx.doi.org/10.1073/pnas.0509009103] [PMID: 16492781]
[89]
Carlander U, Li D, Jolliet O, Emond C, Johanson G. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. Int J Nanomedicine 2016; 11: 625-40.
[http://dx.doi.org/10.2147/IJN.S94370] [PMID: 26929620]
[90]
Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano 2020; 14(3): 3075-95.
[http://dx.doi.org/10.1021/acsnano.9b08142] [PMID: 32078303]
[91]
Deng L, Liu H, Ma Y, Miao Y, Fu X, Deng Q. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles. Toxicol Appl Pharmacol 2019; 384114765
[http://dx.doi.org/10.1016/j.taap.2019.114765] [PMID: 31669777]
[92]
Li M, Al-Jamal KT, Kostarelos K, Reineke J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 2010; 4(11): 6303-17.
[http://dx.doi.org/10.1021/nn1018818] [PMID: 20945925]
[93]
Lankveld DPK, Oomen AG, Krystek P, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010; 31(32): 8350-61.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.045] [PMID: 20684985]
[94]
Ma X, Dai Z, Sun K, et al. Intestinal epithelial cell endoplasmic reticulum stress and inflammatory bowel disease pathogenesis: an update review. Front Immunol 2017; 8: 1271.
[http://dx.doi.org/10.3389/fimmu.2017.01271] [PMID: 29118753]
[95]
Sun JD, Xue YY, Tang M. Application of physiologically based pharmacokinetic model in toxicology of nanomaterials: Research advances. Zhongguo Yaolixue Yu Dulixue Zazhi 2017; 31(2): 203-6.
[96]
Bachler G, von Goetz N, Hungerbühler K. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomedicine 2013; 8: 3365-82.
[PMID: 24039420]
[97]
Li D, Johanson G, Emond C, Carlander U, Philbert M, Jolliet O. Physiologically based pharmacokinetic modeling of polyethylene glycol-coated polyacrylamide nanoparticles in rats. Nanotoxicology 2014; 8(Suppl. 1): 128-37.
[http://dx.doi.org/10.3109/17435390.2013.863406] [PMID: 24392664]
[98]
Li M, Panagi Z, Avgoustakis K, Reineke J. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J Nanomedicine 2012; 7: 1345-56.
[PMID: 22419876]
[99]
Lin Z, Monteiro-Riviere NA, Riviere JE. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology 2016; 10(2): 162-72.
[PMID: 25961857]
[100]
Lin Z, Monteiro-Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(2): 189-217.
[http://dx.doi.org/10.1002/wnan.1304] [PMID: 25316649]
[101]
Mager DE, Mody V, Xu C, et al. Physiologically based pharmacokinetic model for composite nanodevices: effect of charge and size on in vivo disposition. Pharm Res 2012; 29(9): 2534-42.
[http://dx.doi.org/10.1007/s11095-012-0784-7] [PMID: 22688900]
[102]
Jones HM, Zhang Z, Jasper P, et al. A Physiologically-based pharmacokinetic model for the prediction of monoclonal antibody pharmacokinetics from in vitro data. CPT Pharmacometrics Syst Pharmacol 2019; 8(10): 738-47.
[http://dx.doi.org/10.1002/psp4.12461] [PMID: 31464379]
[103]
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63(3): 136-51.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[104]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[105]
Liao J. Physical-, chemical-, and biological-responsive nanomedicine for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(1)e1581
[106]
Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185-98.
[http://dx.doi.org/10.1146/annurev-med-040210-162544]
[107]
Wilhelm S. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1(5): 16014.
[108]
Hasan M, Elkhoury K, Belhaj N, et al. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Mar Drugs 2020; 18(4)E217
[http://dx.doi.org/10.3390/md18040217] [PMID: 32316578]
[109]
Li J, Elkhoury K, Barbieux C, et al. Effects of bioactive marine-derived liposomes on two human breast cancer cell lines. Mar Drugs 2020; 18(4)E211
[http://dx.doi.org/10.3390/md18040211] [PMID: 32295082]
[110]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[111]
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9): 941-51.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[112]
Hong B, Zu Y. Detecting circulating tumor cells: current challenges and new trends. Theranostics 2013; 3(6): 377-94.
[http://dx.doi.org/10.7150/thno.5195] [PMID: 23781285]
[113]
Lammers T, Aime S, Hennink WE, Strom G, Kiessling F. Theranostic nanomedicine. Acc Chem Res 2011; 44(10): 1029-38.
[http://dx.doi.org/10.1201/9780429399039-4]
[114]
Sharma R. Theranostic Nanomedicine; A next generation platform for cancer diagnosis and therapy. Mini Rev Med Chem 2017; 17(18): 1746-57.
[http://dx.doi.org/10.2174/1389557516666160219122524]
[115]
Liu J. Low-intensity focused ultrasound (LIFU)-activated nanodroplets as a theranostic agent for noninvasive cancer molecular imaging and drug delivery. Biomed Sci 2018; 11: 2838-49.
[116]
Tang H. In vivo targeted, responsive, and synergistic cancer nanotheranostics by magnetic resonance imaging-guided synergistic high-intensity focused ultrasound ablation and chemotherapy. ACS Appl Mater Interfaces 2018; 10(18): 15428-4.
[http://dx.doi.org/10.1021/acsami.8b01967]
[117]
d’Angelo M, Castelli V, Benedetti E, et al. Theranostic nanomedicine for malignant gliomas. Front Bioeng Biotechnol 2019; 7: 325.
[http://dx.doi.org/10.3389/fbioe.2019.00325] [PMID: 31799246]
[118]
Madamsetty VS, Mukherjee A, Mukherjee S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front Pharmacol 2019; 10: 1264.
[http://dx.doi.org/10.3389/fphar.2019.01264] [PMID: 31708785]
[119]
Shubayev VI, Pisanic TR II, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009; 61(6): 467-77.
[http://dx.doi.org/10.1016/j.addr.2009.03.007] [PMID: 19389434]
[120]
Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60(11): 1252-65.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[121]
Zhu C, Xia Y. Biomimetics: Reconstitution of low-density lipoprotein for targeted drug delivery and related theranostic applications. Chem Soc Rev 2017; 46(24): 7668-82.
[http://dx.doi.org/10.1039/C7CS00492C]
[122]
Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 2017; 115: 87-95.
[http://dx.doi.org/10.1016/j.phrs.2016.11.014] [PMID: 27865762]
[123]
Uthaman S, Huh KM, Park I-K. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res 2018; 22(1): 22.
[http://dx.doi.org/10.1186/s40824-018-0132-z] [PMID: 30155269]
[124]
Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 1989; 49(23): 6449-65.
[PMID: 2684393]
[125]
Lee FY, Vessey A, Rofstad E, Siemann DW, Sutherland RM. Heterogeneity of glutathione content in human ovarian cancer. Cancer Res 1989; 49(19): 5244-8.
[126]
Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58(15): 1655-70.
[http://dx.doi.org/10.1016/j.addr.2006.09.020] [PMID: 17125884]
[127]
Palanikumar L, Al-Hosani S, Kalmouni M, et al. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol 2020; 3(1): 95.
[http://dx.doi.org/10.1038/s42003-020-0817-4] [PMID: 32127636]
[128]
Yilmaz G. pH responsive glycopolymer nanoparticles for targeted delivery of anti-cancer drugs. Mol Syst Des Eng 2018; 3(1): 150-8.
[http://dx.doi.org/10.1039/C7ME00086C]
[129]
Wang J, Sun X, Mao W, et al. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv Mater 2013; 25(27): 3670-6.
[http://dx.doi.org/10.1002/adma.201300929] [PMID: 23740675]
[130]
Chibh S, Kour A, Yadav N, et al. Redox-responsive dipeptide nanostructures toward targeted cancer therapy. ACS Omega 2020; 5(7): 3365-75.
[http://dx.doi.org/10.1021/acsomega.9b03547] [PMID: 32118151]
[131]
Xu X, Wu J, Liu S, et al. Redox-responsive nanoparticle-mediated systemic RNAi for effective cancer therapy. Small 2018; 14(41)e1802565
[http://dx.doi.org/10.1002/smll.201802565] [PMID: 30230235]
[132]
Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44(5): 479-96.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[133]
Li Y, Bai H, Wang H, Shen Y, Tang G, Ping Y. Reactive oxygen species (ROS)-responsive nanomedicine for RNAi-based cancer therapy. Nanoscale 2017; 10(1): 203-14.
[http://dx.doi.org/10.1039/C7NR06689A] [PMID: 29210417]
[134]
Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances. Nanomedicine 2015; 11(8): 2033-40.
[http://dx.doi.org/10.1016/j.nano.2015.07.003] [PMID: 26255114]
[135]
Zhao B, Zhao P, Jin Z, Fan M, Meng J, He Q. Programmed ROS/CO-releasing nanomedicine for synergetic chemodynamic-gas therapy of cancer. J Nanobiotechnology 2019; 17(1): 75.
[http://dx.doi.org/10.1186/s12951-019-0507-x] [PMID: 31196217]
[136]
Zheng M, Liu Y, Wang Y, et al. ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv Mater 2019; 31(37)e1903277
[http://dx.doi.org/10.1002/adma.201903277] [PMID: 31348581]
[137]
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016; 45(23): 6597-626.
[http://dx.doi.org/10.1039/C6CS00271D] [PMID: 27722328]
[138]
Xu Q, Chu C-C. Development of ROS-responsive amino acid-based Poly(ester amide) nanoparticle for anticancer drug delivery. J Biomed Mater Res A 2021; 109(4): 524-37.
[139]
Xu Y, Zhang J, Liu X, et al. MMP-2-responsive gelatin nanoparticles for synergistic tumor therapy. Pharm Dev Technol 2019; 24(8): 1002-13.
[http://dx.doi.org/10.1080/10837450.2019.1621899] [PMID: 31109231]
[140]
Zhou K, Zhu Y, Chen X, Li L, Xu W. Redox- and MMP-2-sensitive drug delivery nanoparticles based on gelatin and albumin for tumor targeted delivery of paclitaxel. Mater Sci Eng C 2020; 114111006
[http://dx.doi.org/10.1016/j.msec.2020.111006] [PMID: 32993973]
[141]
Dai L, Liu J, Luo Z, Li M, Cai K. Tumor therapy: targeted drug delivery systems. J Mater Chem B Mater Biol Med 2016; 4(42): 6758-72.
[http://dx.doi.org/10.1039/C6TB01743F] [PMID: 32263571]
[142]
Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front Bioeng Biotechnol 2019; 7: 324-4.
[http://dx.doi.org/10.3389/fbioe.2019.00324] [PMID: 31824930]
[143]
Loria R, Giliberti C, Bedini A, et al. Very low intensity ultrasounds as a new strategy to improve selective delivery of nanoparticles-complexes in cancer cells. J Exp Clin Cancer Res 2019; 38(1): 1.
[http://dx.doi.org/10.1186/s13046-018-1018-6] [PMID: 30606223]
[144]
Baghirov H, Snipstad S, Sulheim E, et al. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model. PLoS One 2018; 13(1)e0191102
[http://dx.doi.org/10.1371/journal.pone.0191102] [PMID: 29338016]
[145]
Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 2009; 42(8): 1097-107.
[http://dx.doi.org/10.1021/ar9000026] [PMID: 19476332]
[146]
Liu E, Zhang M, Cui H, et al. Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharm Sin B 2018; 8(6): 956-68.
[http://dx.doi.org/10.1016/j.apsb.2018.07.012]
[147]
Jose J, Kumar R, Harilal S, et al. Magnetic nanoparticles for hyperthermia in cancer treatment: An emerging tool. Environ Sci Pollut Res Int 2020; 27(16): 19214-25.
[http://dx.doi.org/10.1007/s11356-019-07231-2] [PMID: 31884543]
[148]
Chen YA-OX. Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators. Nat Commun 2017; 8: 15782.
[http://dx.doi.org/10.1038/ncomms15782]
[149]
Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 2010; 110(4): 1857-959.
[http://dx.doi.org/10.1021/cr900327d] [PMID: 20356105]
[150]
Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev 2014; 114(21): 10869-939.
[http://dx.doi.org/10.1021/cr400532z] [PMID: 25260098]
[151]
Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 2010; 1(1): 13-28.
[http://dx.doi.org/10.1016/j.jare.2010.02.002]
[152]
Qian C, Yu J, Chen Y, et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv Mater 2016; 28(17): 3313-20.
[http://dx.doi.org/10.1002/adma.201505869] [PMID: 26948067]
[153]
Zhang H, Cui W, Qu X, et al. Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc Natl Acad Sci USA 2019; 116(16): 7744-9.
[http://dx.doi.org/10.1073/pnas.1817251116] [PMID: 30926671]
[154]
Souto EB. Patenting nanomedicines: Legal aspects, intellectual property and grant opportunities Patenting nanomedicines: legal aspects Intellectual property and grant opportunities. Springer Science and Business Media 2012.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy