Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Zinc Phosphate Nanoparticles: A Review on Physical, Chemical, and Biological Synthesis and their Applications

Author(s): Mona Sadeghi-Aghbash and Mostafa Rahimnejad *

Volume 23, Issue 10, 2022

Published on: 11 January, 2022

Page: [1228 - 1244] Pages: 17

DOI: 10.2174/1389201022666211015115753

Price: $65

Abstract

Nanotechnology is considered one of the emerging fields of science that has influenced diverse applications, including food, biomedicine, and cosmetics. The production and usage of materials with nanoscale dimensions like nanoparticles are attractive parts of nanotechnology. Among different nanoparticles, zinc phosphate nanoparticles have attracted attention due to their biocompatibility, biosafety, non-toxicity, and environmental compatibility. These nanoparticles could be employed in various applications like anticorrosion, antibacterial, dental cement, glass ceramics, tissue engineering, and drug delivery. A variety of physical, chemical, and green synthesis methods have been used to synthesize zinc phosphate nanoparticles. All these methods have some limitations along with certain advantages. Chemical approaches may cause health risks and environmental problems due to the toxicity of hazardous chemicals used in these techniques. Moreover, physical methods require high amounts of energy as well as expensive instruments. However, biological methods are free of chemical contaminants and eco-friendly. This review is aimed to explore different methods for the synthesis of zinc phosphate nanoparticles, including physical, chemical, and more recently, biological approaches (using various sources such as plants, algae, and microorganisms). Also, it summarizes the practicable applications of zinc phosphate nanoparticles as anticorrosion pigment, dental cement, and drug delivery agents.

Keywords: Zinc phosphate nanoparticles, physical and chemical syntheses, biosynthesis, anticorrosion application, dental cement, drug delivery.

Graphical Abstract
[1]
Bhattacharya, D.; Gupta, R.K. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol., 2005, 25(4), 199-204.
[http://dx.doi.org/10.1080/07388550500361994] [PMID: 16419617]
[2]
Singh, A.; Singh, N.; Afzal, S.; Singh, T.; Hussain, I. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J. Mater. Sci., 2018, 53(1), 185-201.
[http://dx.doi.org/10.1007/s10853-017-1544-1]
[3]
Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient. Technol, 2017, 3(4), 406-413.
[4]
Happy, Agarwal Soumya Menon; Venkat Kumar, S.; Rajeshkumar, S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact., 2018, 286, 60-70.
[http://dx.doi.org/10.1016/j.cbi.2018.03.008] [PMID: 29551637]
[5]
Umamaheswari, A.; Lakshmana Prabu, S.; Puratchikody, A. Biosynthesis of zinc oxide nanoparticle: A review on greener approach. J. Bioequivalence Bioavailab., 2018, 5, 151-154.
[6]
Rahimnejad, M.; Najafpour, G.; Bakeri, G. Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier. Colloids Surf. A Physicochem. Eng. Asp., 2012, 412, 96-100.
[http://dx.doi.org/10.1016/j.colsurfa.2012.07.022]
[7]
Mashkour, M.; Rahimnejad, M.; Pourali, S.; Ezoji, H.; ElMekawy, A.; Pant, D. Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell. Prog. Nat. Sci., 2017, 27(6), 647-651.
[http://dx.doi.org/10.1016/j.pnsc.2017.11.003]
[8]
Paul, W.; Sharma, C. Inorganic nanoparticles for targeted drug delivery. In: Biointegration of Medical Implant Materials; Elsevier, 2010; pp. 204-235.
[http://dx.doi.org/10.1533/9781845699802.2.204]
[9]
Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci., 2006, 61(3), 1027-1040.
[http://dx.doi.org/10.1016/j.ces.2005.06.019]
[10]
Hulkoti, N.I.; Taranath, T.C. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf. B Biointerfaces, 2014, 121, 474-483.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.027] [PMID: 25001188]
[11]
Pashai, E.; Najafpour Darzi, G.; Jahanshahi, M.; Yazdian, F.; Rahimnejad, M. An electrochemical nitric oxide biosensor based on immobilized cytochrome c on a chitosan-gold nanocomposite modified gold electrode. Int. J. Biol. Macromol., 2018, 108, 250-258.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.157] [PMID: 29191423]
[12]
Mohd Yusof, H.; Mohamad, R.; Zaidan, U.H.; Abdul Rahman, N.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol., 2019, 10(1), 57.
[http://dx.doi.org/10.1186/s40104-019-0368-z] [PMID: 31321032]
[13]
Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem., 2019, 12(8), 1823-1838.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[14]
Bouloudenine, M.; Bououdina, M. Toxic effects of engineered nanoparticles on living cells. In: Emerging Research on Bioinspired Materials Engineering; , 2016; pp. 35-68.
[http://dx.doi.org/10.4018/978-1-4666-9811-6.ch002]
[15]
Leite, A.O.; Araújo, W.S.; Margarit, I.C.; Correia, A.N.; Lima-Neto, P.d. Evaluation of the anticorrosive properties of environmental friendly inorganic corrosion inhibitors pigments. J. Braz. Chem. Soc., 2005, 16(4), 756-762.
[http://dx.doi.org/10.1590/S0103-50532005000500013]
[16]
Czarnecka, B.; Limanowska-Shaw, H.; Nicholson, J.W. Ion-release, dissolution and buffering by zinc phosphate dental cements. J. Mater. Sci. Mater. Med., 2003, 14(7), 601-604.
[http://dx.doi.org/10.1023/A:1024018923186] [PMID: 15348421]
[17]
Jadhav, A.J.; Karekar, S.E.; Pinjari, D.V.; Datar, Y.G.; Bhanvase, B.A.; Sonawane, S.H.; Pandit, A.B. Development of smart nanocontainers with a zinc phosphate core and a pH-responsive shell for controlled release of immidazole. Hybrid Mater., 2015, 2(1)
[http://dx.doi.org/10.1515/hyma-2015-0001]
[18]
Fiegel, H.; Voges, H-W.; Hamamoto, T.; Umemura, S.; Iwata, T.; Miki, H.; Fujita, Y.; Buysch, H-J.; Garbe, D.; Paulus, W. Phenol derivatives in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: New York, 2002.
[19]
Yan, S.; He, W.; Sun, C.; Zhang, X.; Zhao, H.; Li, Z.; Zhou, W.; Tian, X.; Sun, X.; Han, X. The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigm., 2009, 80(2), 254-258.
[http://dx.doi.org/10.1016/j.dyepig.2008.06.010]
[20]
Boonchom, B.; Baitahe, R.; Kongtaweelert, S.; Vittayakorn, N. Kinetics and thermodynamics of zinc phosphate hydrate synthesized by a simple route in aqueous and acetone media. Ind. Eng. Chem. Res., 2010, 49(8), 3571-3576.
[http://dx.doi.org/10.1021/ie901626z]
[21]
Liu, C.; Xie, H-Z.; Wang, J-D.; Tong, Q.; Liu, J-K.; Yang, X-H. Preparation and anti-corrosion performance of zinc phosphate nanocrystals by ultrasonic–hydrothermal synergistic route. Nano, 2014, 9(06), 1450059.
[http://dx.doi.org/10.1142/S1793292014500593]
[22]
Yuan, A.; Liao, S.; Tong, Z.F.; Wu, J.; Huang, Z. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study. Mater. Lett., 2006, 60(17), 2110-2114.
[http://dx.doi.org/10.1016/j.matlet.2005.12.082]
[23]
Zhou, X.; Du, H.; Ma, H.; Sun, L.; Cao, R.; Li, H.; Zhang, P. Facile Preparation and characterization of zinc phosphate with self-assembled flower-like micro-nanostructures. J. Phys. Chem. Solids, 2015, 78, 1-7.
[http://dx.doi.org/10.1016/j.jpcs.2014.10.020]
[24]
Jung, S-H.; Oh, E.; Shim, D.; Park, D-H.; Cho, S.; Lee, B.R.; Jeong, Y.U.; Lee, K-H.; Jeong, S-H. Sonochemical synthesis of amorphous zinc phosphate nanospheres. Bull. Korean Chem. Soc., 2009, 30(10), 2281.
[25]
Parhi, P.; Manivannan, V.; Kohli, S.; McCurdy, P. Room temperature metathetic synthesis and characterization of α-hopeite, Zn3(PO4)2· 4H2O. Mater. Res. Bull., 2008, 43(7), 1836-1841.
[http://dx.doi.org/10.1016/j.materresbull.2007.07.005]
[26]
Gier, T.E.; Stucky, G.D. Low-temperature synthesis of hydrated zinco (beryllo)-phosphate and arsenate molecular sieves. Nature, 1991, 349(6309), 508.
[http://dx.doi.org/10.1038/349508a0]
[27]
Sadeghi Aqbash, M.; Rahimnejad, M. Effect of zinc phosphate nanoparticles in combination with glass ionomer cements on streptococcus mutans. J. Mazandaran Univ. Med. Sci., 2017, 27(153), 39-48.
[28]
Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 844-851.
[http://dx.doi.org/10.1080/21691401.2019.1577878] [PMID: 30879351]
[29]
Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S. Selection of a suitable method for the synthesis of copper nanoparticles. Nano, 2012, 7(05), 1230005.
[http://dx.doi.org/10.1142/S1793292012300058]
[30]
Cushing, B.L.; Kolesnichenko, V.L.; O’Connor, C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev., 2004, 104(9), 3893-3946.
[http://dx.doi.org/10.1021/cr030027b] [PMID: 15352782]
[31]
Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy, 2006, 83(1), 132-140.
[http://dx.doi.org/10.1016/j.hydromet.2006.03.019]
[32]
Pirzadeh, K.; Ghoreyshi, A.A.; Rahimnejad, M.; Mohammadi, M. Electrochemical synthesis, characterization and application of a microstructure Cu3 (BTC)2 metal organic framework for CO2 and CH4 separation. Korean J Eng, 2018, 35(4), 974-983.
[http://dx.doi.org/10.1007/s11814-017-0340-6]
[33]
Baker, G.; Rahimnejad, I. Kinetics study of hydrazodicarbonamide synthesis reaction. Chem. Ind. Chem. Eng. Q., 2013, 19(2), 273-279.
[http://dx.doi.org/10.2298/CICEQ120221061B]
[34]
Giri, P.; Bhattacharyya, S.; Singh, D.K.; Kesavamoorthy, R.; Panigrahi, B.; Nair, K. Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J. Appl. Phys., 2007, 102(9), 093515.
[http://dx.doi.org/10.1063/1.2804012]
[35]
Amirkhanlou, S.; Ketabchi, M.; Parvin, N. Nanocrystalline/nanoparticle ZnO synthesized by high energy ball milling process. Mater. Lett., 2012, 86, 122-124.
[http://dx.doi.org/10.1016/j.matlet.2012.07.041]
[36]
Dhandapani, P.; Siddarth, A.S.; Kamalasekaran, S.; Maruthamuthu, S.; Rajagopal, G. Bio-approach: Ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohydr. Polym., 2014, 103, 448-455.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.074] [PMID: 24528753]
[37]
Ramesh, S.; Narayanan, V. Synthesis and characterisation of zinc phosphate nanoparticles by precipitation method.,
[38]
Grzmil, B.; Kic, B.; Lubkowski, K. Studies on obtaining of zinc phosphate nanomaterials. Rev. Adv. Mater. Sci., 2007, 14, 46-48.
[39]
Liang, H.P.; Zhang, H.M.; Hu, J.S.; Guo, Y.G.; Wan, L.J.; Bai, C.L. Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed., 2004, 43(12), 1540-1543.
[http://dx.doi.org/10.1002/anie.200352956] [PMID: 15022227]
[40]
Miao, Z.; Wu, Y.; Zhang, X.; Liu, Z.; Han, B.; Ding, K.; An, G. Large-scale production of self-assembled SnO2 nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas. J. Mater. Chem., 2007, 17(18), 1791-1796.
[http://dx.doi.org/10.1039/b617114a]
[41]
Liu, M-P.; Li, C-H.; Du, H-B.; You, X-Z. Facile preparation of silicon hollow spheres and their use in electrochemical capacitive energy storage. Chem. Commun. (Camb.), 2012, 48(41), 4950-4952.
[http://dx.doi.org/10.1039/c2cc17083c] [PMID: 22297483]
[42]
Bakeri, G.; Ismail, A.; Rahimnejad, M.; Matsuura, T. Porous polyethersulfone hollow fiber membrane in gas–liquid contacting processes. Chem. Eng. Res. Des., 2014, 92(7), 1381-1390.
[http://dx.doi.org/10.1016/j.cherd.2013.11.008]
[43]
Kang, X.; Cheng, Z.; Yang, D.; Ma, P.a.; Shang, M.; Peng, C.; Dai, Y.; Lin, J. Design and synthesis of multifunctional drug carriers based on luminescent rattle‐type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch. Adv. Funct. Mater., 2012, 22(7), 1470-1481.
[http://dx.doi.org/10.1002/adfm.201102746]
[44]
Liang, Y-H.; Liu, C-H.; Liao, S-H.; Lin, Y-Y.; Tang, H-W.; Liu, S-Y.; Lai, I-R.; Wu, K.C-W. Cosynthesis of cargo-loaded hydroxyapatite/alginate core-shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pre-gel method. ACS Appl. Mater. Interfaces, 2012, 4(12), 6720-6727.
[http://dx.doi.org/10.1021/am301895u] [PMID: 23151216]
[45]
Zhai, X.; Yu, M.; Cheng, Z.; Hou, Z.; Ma, P.; Yang, D.; Kang, X.; Dai, Y.; Wang, D.; Lin, J. Rattle-type hollow CaWO4: Tb(3+)@SiO2 nanocapsules as carriers for drug delivery. Dalton Trans., 2011, 40(48), 12818-12825.
[http://dx.doi.org/10.1039/c1dt10996k] [PMID: 21879092]
[46]
Wu, C-W.K.; Yang, Y-H.; Liang, Y-H.; Chen, H-Y.; Sung, E.; Yamauchi, Y.; Lin, F-H. Facile synthesis of hollow mesoporous hydroxyapatite nanoparticles for intracellular bio-imaging. Curr. Nanosci., 2011, 7(6), 926-931.
[http://dx.doi.org/10.2174/157341311798220763]
[47]
Wang, Y.; Zhu, Q.; Zhang, H. Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process. Chem. Commun. (Camb.), 2005, (41), 5231-5233.
[http://dx.doi.org/10.1039/b508807k] [PMID: 16228045]
[48]
Gao, R.; Zhou, S.; Chen, M.; Wu, L. Facile synthesis of monodisperse meso-microporous Ta3 N5 hollow spheres and their visible light-driven photocatalytic activity. J. Mater. Chem., 2011, 21(43), 17087-17090.
[http://dx.doi.org/10.1039/c1jm13756e]
[49]
Ye, F.; Guo, H.; Zhang, H.; He, X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater., 2010, 6(6), 2212-2218.
[http://dx.doi.org/10.1016/j.actbio.2009.12.014] [PMID: 20004747]
[50]
Yin, Y.; Chen, M.; Zhou, S.; Wu, L. A general and feasible method for the fabrication of functional nanoparticles in mesoporous silica hollow composite spheres. J. Mater. Chem., 2012, 22(22), 11245-11251.
[http://dx.doi.org/10.1039/c2jm31138k]
[51]
Lou, X.W.; Wang, Y.; Yuan, C.; Lee, J.Y.; Archer, L.A. Template‐free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater., 2006, 18(17), 2325-2329.
[http://dx.doi.org/10.1002/adma.200600733]
[52]
Yang, X.; Zhou, Y.; Yu, X.; Demir, H.V.; Sun, X.W. Bifunctional highly fluorescent hollow porous microspheres made of BaMoO4: Pr3+ nanocrystals via a template-free synthesis. J. Mater. Chem., 2011, 21(25), 9009-9013.
[http://dx.doi.org/10.1039/c1jm10458f]
[53]
Yu, J.; Xiang, Q.; Ran, J.; Mann, S. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm, 2010, 12(3), 872-879.
[http://dx.doi.org/10.1039/B914385H]
[54]
Ha, T-L.; Kim, H.J.; Shin, J. Im, G.H.; Lee, J.W.; Heo, H.; Yang, J.; Kang, C.M.; Choe, Y.S.; Lee, J.H.; Lee, I.S. Development of target-specific multimodality imaging agent by using hollow manganese oxide nanoparticles as a platform. Chem. Commun. (Camb.), 2011, 47(32), 9176-9178.
[http://dx.doi.org/10.1039/c1cc12961a] [PMID: 21761053]
[55]
Yuan, X.; Zhu, B.; Ma, X.; Tong, G.; Su, Y.; Zhu, X. Low temperature and template-free synthesis of hollow hydroxy zinc phosphate nanospheres and their application in drug delivery. Langmuir, 2013, 29(39), 12275-12283.
[http://dx.doi.org/10.1021/la402743b] [PMID: 24003970]
[56]
Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater., 2009, 10(1), 013001.
[http://dx.doi.org/10.1088/1468-6996/10/1/013001] [PMID: 27877250]
[57]
Feng, W.; Huang, P.; Wang, B.; Wang, C.; Wang, W.; Wang, T.; Chen, S.; Lv, R.; Qin, Y.; Ma, J. Solvothermal synthesis of ZnO with different morphologies in dimethylacetamide media. Ceram. Int., 2016, 42(2), 2250-2256.
[http://dx.doi.org/10.1016/j.ceramint.2015.10.018]
[58]
Rahimnejad, M.; Hassaninejad-Darzi, S. Organic template-free synthesis of Ni-ZSM-5 nanozeolite: A novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE. Int. J. Bio-Inorg. Hybr. Nanomater, 2015, 4(3), 141-153.
[59]
Tofighi, A.; Rahimnejad, M.; Ghorbani, M. Ternary nanotube α-MnO2/GO/AC as an excellent alternative composite modifier for cathode electrode of microbial fuel cell. J. Therm. Anal. Calorim., 2019, 135(3), 1667-1675.
[http://dx.doi.org/10.1007/s10973-018-7198-7]
[60]
Chen, D.; Jiao, X.; Cheng, G. Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun., 1999, 113(6), 363-366.
[http://dx.doi.org/10.1016/S0038-1098(99)00472-X]
[61]
Hassaninejad–Darzi, S.K.; Rahimnejad, M.; Mirzababaei, S.N. Electrocatalytic oxidation of glucose onto carbon paste electrode modified with nickel hydroxide decorated NaA nanozeolite. Microchem. J., 2016, 128, 7-17.
[http://dx.doi.org/10.1016/j.microc.2016.03.016]
[62]
Ning, Z-l.; Li, W-j.; Sun, C-y.; Ping, C.; Chang, Z-d. Synthesis and optical properties of zinc phosphate microspheres. T Nonferr Metal Soc, 2013, 23(3), 718-724.
[http://dx.doi.org/10.1016/S1003-6326(13)62516-9]
[63]
Askarinejad, A.; Alavi, M.A.; Morsali, A. Sonochemically assisted synthesis of ZnO nanoparticles: A novel direct method. Iran J Chem Chem Eng, 2011, 30(3), 75-81.
[64]
Zhou, X.; Bai, H.; Ma, H.; Li, H.; Yuan, W.; Du, H.; Zhang, P.; Xin, H. Synthesis of zinc phosphate and zinc ammonium phosphate nanostructures with different morphologies through pH control. Mater. Charact., 2015, 108, 22-28.
[http://dx.doi.org/10.1016/j.matchar.2015.08.012]
[65]
Jung, S-H.; Oh, E.; Lim, H.; Shim, D-S.; Cho, S.; Lee, K-H.; Jeong, S-H. Shape-selective fabrication of zinc phosphate hexagonal bipyramids via a disodium phosphate-assisted sonochemical route. Cryst. Growth Des., 2009, 9(8), 3544-3547.
[http://dx.doi.org/10.1021/cg900287h]
[66]
Jadhav, A.J.; Pinjari, D.V.; Pandit, A.B. Surfactant assisted sonochemical synthesis of hollow structured zinc phosphate nanoparticles and their application as nanocarrier. Chem. Eng. J., 2016, 297, 116-120.
[http://dx.doi.org/10.1016/j.cej.2016.04.001]
[67]
Roming, M.; Feldmann, C.; Avadhut, Y.S.; der Günne, J.S.a. Characterization of noncrystalline nanomaterials: NMR of zinc phosphate as a case study. Chem. Mater., 2008, 20(18), 5787-5795.
[http://dx.doi.org/10.1021/cm800805f]
[68]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 2008, 10(3), 507-517.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[69]
Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Microbial nanoparticle production; Nanotechnology, 2003.
[70]
Talebi, S.; Ramezani, F.; Ramezani, M. Biosynthesis of metal nanoparticles by microorganisms. Nanocon Olomouc, Czech Republic, EU, 2010, 10, 12-18.
[71]
Ahmed, S. Annu; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B, 2017, 166, 272-284.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.011] [PMID: 28013182]
[72]
Zare, E.; Pourseyedi, S.; Khatami, M.; Darezereshki, E. Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J. Mol. Struct., 2017, 1146, 96-103.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.118]
[73]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.; Alam, M.; Kumar, R. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1(10), 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[74]
Li, X.; Xu, H.; Chen, Z-S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 2011
[http://dx.doi.org/10.1155/2011/270974]
[75]
Khodashenas, B.; Ghorbani, H.R. Synthesis of copper nanoparticles: An overview of the various methods. Korean J. Chem. Eng., 2014, 31(7), 1105-1109.
[http://dx.doi.org/10.1007/s11814-014-0127-y]
[76]
Ingale, A.G.; Chaudhari, A. Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J. Nanomed. Nanotechnol., 2013, 4(165), 1-7.
[http://dx.doi.org/10.4172/2157-7439.1000165]
[77]
Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H-C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71(7), 1308-1316.
[http://dx.doi.org/10.1016/j.chemosphere.2007.11.047] [PMID: 18194809]
[78]
Qu, J.; Yuan, X.; Wang, X.; Shao, P. Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ. Pollut., 2011, 159(7), 1783-1788.
[http://dx.doi.org/10.1016/j.envpol.2011.04.016] [PMID: 21549461]
[79]
Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.R.; Parsons, J.G.; Troiani, H.; Jose-Yacaman, M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 2003, 19(4), 1357-1361.
[http://dx.doi.org/10.1021/la020835i]
[80]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[81]
Dobrucka, R.; Długaszewska, J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci., 2016, 23(4), 517-523.
[http://dx.doi.org/10.1016/j.sjbs.2015.05.016] [PMID: 27298586]
[82]
Fawcett, D.; Verduin, J.J.; Shah, M.; Sharma, S.B.; Poinern, G.E.J. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. Int. J. Nanosci.,, 2017, 2017
[http://dx.doi.org/10.1155/2017/8013850]
[83]
Thema, F.; Manikandan, E.; Dhlamini, M.; Maaza, M. Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett., 2015, 161, 124-127.
[http://dx.doi.org/10.1016/j.matlet.2015.08.052]
[84]
Shankar, P.D.; Shobana, S.; Karuppusamy, I.; Pugazhendhi, A.; Ramkumar, V.S.; Arvindnarayan, S.; Kumar, G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme Microb. Technol., 2016, 95, 28-44.
[http://dx.doi.org/10.1016/j.enzmictec.2016.10.015] [PMID: 27866624]
[85]
Bird, S.M.; El-Zubir, O.; Rawlings, A.E.; Leggett, G.J.; Staniland, S.S. A novel design strategy for nanoparticles on nanopatterns: interferometric lithographic patterning of Mms6 biotemplated magnetic nanoparticles. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(18), 3948-3955.
[http://dx.doi.org/10.1039/C5TC03895B] [PMID: 27358738]
[86]
Asmathunisha, N.; Kathiresan, K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B Biointerfaces, 2013, 103, 283-287.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.030] [PMID: 23202242]
[87]
Beveridge, T.; Hughes, M.; Lee, H.; Leung, K.; Poole, R.; Savvaidis, I.; Silver, S.; Trevors, J. Metal-microbe interactions: Contemporary approaches. In: Advances in microbial physiology; Elsevier, 1996; Vol. 38, pp. 177-243.
[http://dx.doi.org/10.1016/S0065-2911(08)60158-7]
[88]
Rouch, D.A.; Lee, B.T.; Morby, A.P. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J. Ind. Microbiol., 1995, 14(2), 132-141.
[http://dx.doi.org/10.1007/BF01569895] [PMID: 7766205]
[89]
Silver, S. Bacterial resistances to toxic metal ions--a review. Gene, 1996, 179(1), 9-19.
[http://dx.doi.org/10.1016/S0378-1119(96)00323-X] [PMID: 8991852]
[90]
Cava, F.; de Pedro, M.A.; Schwarz, H.; Henne, A.; Berenguer, J. Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria. Mol. Microbiol., 2004, 52(3), 677-690.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04011.x] [PMID: 15101975]
[91]
Dameron, C.; Reese, R.; Mehra, R.; Kortan, A.; Carroll, P.; Steigerwald, M.; Brus, L.; Winge, D. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 1989, 338(6216), 596.
[http://dx.doi.org/10.1038/338596a0]
[92]
Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci., 2003, 85(2), 162-170.
[93]
Raliya, R.; Tarafdar, J.C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric. Res., 2013, 2(1), 48-57.
[http://dx.doi.org/10.1007/s40003-012-0049-z]
[94]
Volesky, B.; Holan, Z.R. Biosorption of heavy metals. Biotechnol. Prog., 1995, 11(3), 235-250.
[http://dx.doi.org/10.1021/bp00033a001] [PMID: 7619394]
[95]
Sanguiñedo, P.; Fratila, R.M.; Estevez, M.B.; de la Fuente, J.M.; Grazú, V.; Alborés, S. Extracellular biosynthesis of silver nanoparticles using fungi and their antibacterial activity. Nano Biomed. Eng., 2018, 10, 165-173.
[http://dx.doi.org/10.5101/nbe.v10i2.p165-173]
[96]
Gericke, M.; Pinches, A. Microbial production of gold nanoparticles. Gold Bull., 2006, 39(1), 22-28.
[http://dx.doi.org/10.1007/BF03215529]
[97]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[98]
Menon, S.; Rajeshkumar, S.; Kumar, V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Effic. Technol., 2017, 3(4), 516-527.
[99]
Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng., 2002, 78(5), 583-588.
[http://dx.doi.org/10.1002/bit.10233] [PMID: 12115128]
[100]
Breierová, E.; Vajcziková, I.; Sasinková, V.; Stratilová, E.; Fišera, I.; Gregor, T.; Šajbidor, J. Biosorption of cadmium ions by different yeast species. Z. Naturforsch. C J. Biosci., 2002, 57(7-8), 634-639.
[http://dx.doi.org/10.1515/znc-2002-7-815] [PMID: 12240989]
[101]
Saratale, R.G.; Karuppusamy, I.; Saratale, G.D.; Pugazhendhi, A.; Kumar, G.; Park, Y.; Ghodake, G.S.; Bharagava, R.N.; Banu, J.R.; Shin, H.S. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf. B Biointerfaces, 2018, 170, 20-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.045] [PMID: 29860217]
[102]
Ahmad, A.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 2003, 19(8), 3550-3553.
[http://dx.doi.org/10.1021/la026772l]
[103]
Prasad, T.N.; Kambala, V.S.R.; Naidu, R. Phyconanotechnology: Synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J. Appl. Phycol., 2013, 25(1), 177-182.
[http://dx.doi.org/10.1007/s10811-012-9851-z]
[104]
Zhang, X.; He, X.; Wang, K.; Yang, X. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J. Biomed. Nanotechnol., 2011, 7(2), 245-254.
[http://dx.doi.org/10.1166/jbn.2011.1285] [PMID: 21702362]
[105]
Ahmad, A.; Senapati, S.; Khan, M.I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology, 2003, 14(7), 824.
[http://dx.doi.org/10.1088/0957-4484/14/7/323]
[106]
Santomauro, G.; Srot, V.; Bussmann, B.; van Aken, P.A.; Brümmer, F.; Strunk, H.; Bill, J. Biomineralization of zinc-phosphate-based nano needles by living microalgae. J. Biomed. Nanotechnol., 2012, 3, 362-370.
[107]
Zhan, Q.; Qian, C. Microbial-induced synthesis of nanoparticles of zinc phosphate and basic zinc carbonate based on the degradation of glyphosate. Dig. J. Nanomater. Bios., 2016, 11(2)
[108]
He, W.; Yan, S.; Wang, Y.; Zhang, X.; Zhou, W.; Tian, X.; Sun, X.; Han, X. Biomimetic synthesis of mesoporous zinc phosphate nanoparticles. J. Alloys Compd., 2009, 477(1), 657-660.
[http://dx.doi.org/10.1016/j.jallcom.2008.10.136]
[109]
Sadeghi-Aghbash, M.; Rahimnejad, M.; Pourali, S. Bio-mediated synthesis and characterization of zinc phosphate nanoparticles using Enterobacter aerogenes cells for antibacterial and anticorrosion applications; Curr. Pharm. Biotechno, 2020.
[http://dx.doi.org/10.2174/1389201021666200506073534]
[110]
Salih, V.; Patel, A.; Knowles, J.C. Zinc-containing phosphate-based glasses for tissue engineering. Biomed. Mater., 2007, 2(1), 11-20.
[http://dx.doi.org/10.1088/1748-6041/2/1/003] [PMID: 18458428]
[111]
Jegannathan, S.; Narayanan, T.S.; Ravichandran, K.; Rajeswari, S. Performance of zinc phosphate coatings obtained by cathodic electrochemical treatment in accelerated corrosion tests. Electrochim. Acta, 2005, 51(2), 247-256.
[http://dx.doi.org/10.1016/j.electacta.2005.04.020]
[112]
Wang, G.; Cao, N.; Wang, Y. Characteristics and corrosion studies of zinc–manganese phosphate coatings on magnesium–lithium alloy. RSC Advances, 2014, 4(104), 59772-59778.
[http://dx.doi.org/10.1039/C4RA08122F]
[113]
Wang, C.; Zhang, L.; Li, S.; Zhang, M.; Wang, T.; Li, L.; Wang, C.; Su, Z. A designed synthesis of multifunctional Fe3O4@carbon/zinc phosphate nanoparticles for simultaneous imaging and synergic chemo-photothermal cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(35), 5809-5813.
[http://dx.doi.org/10.1039/C6TB01669C] [PMID: 32263753]
[114]
Müller, P.; Morys, M.; Sut, A.; Jäger, C.; Illerhaus, B.; Schartel, B. Melamine poly (zinc phosphate) as flame retardant in epoxy resin: Decomposition pathways, molecular mechanisms and morphology of fire residues. Polym. Degrad. Stabil., 2016, 130, 307-319.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.06.023]
[115]
Shao, Y.; Jia, C.; Meng, G.; Zhang, T.; Wang, F. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corros. Sci., 2009, 51(2), 371-379.
[http://dx.doi.org/10.1016/j.corsci.2008.11.015]
[116]
Niu, L.; Jiang, Z.; Li, G.; Gu, C.; Lian, J. A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surf. Coat. Tech., 2006, 200(9), 3021-3026.
[http://dx.doi.org/10.1016/j.surfcoat.2004.10.119]
[117]
Chou, A.H.; LeGeros, R.Z.; Chen, Z.; Li, Y. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes. Implant Dent., 2007, 16(1), 89-100.
[http://dx.doi.org/10.1097/ID.0b013e318031224a] [PMID: 17356375]
[118]
Wu, J.; Yan, Y.; Liu, B.; Wang, X.; Li, J.; Yu, J. Multifunctional open-framework zinc phosphate |C12H14N2|[Zn6(PO4)4(HPO4) (H2O)2]: photochromic, photoelectric and fluorescent properties. Chem. Commun. (Camb.), 2013, 49(44), 4995-4997.
[http://dx.doi.org/10.1039/c3cc40936h] [PMID: 23532064]
[119]
Mehrvarz, S.; Chaichi, M.; Alikhani, H. Effect of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L.). Agric. Environ. Sci., 2008, 3(6), 822-828.
[120]
Pascuta, P.; Borodi, G.; Jumate, N.; Vida-Simiti, I.; Viorel, D.; Culea, E. The structural role of manganese ions in some zinc phosphate glasses and glass ceramics. J. Alloys Compd., 2010, 504(2), 479-483.
[http://dx.doi.org/10.1016/j.jallcom.2010.05.147]
[121]
Rezaee, N.; Attar, M.; Ramezanzadeh, B. Studying corrosion performance, microstructure and adhesion properties of a room temperature zinc phosphate conversion coating containing Mn2+ on mild steel. Surf. Coat. Tech., 2013, 236, 361-367.
[http://dx.doi.org/10.1016/j.surfcoat.2013.10.014]
[122]
Simpson, C. Improved corrosion-inhibiting pigments. Chemtech, 1997, 27(4)
[123]
Ende, D.; Kessler, W.; Oelkrug, D.; Fuchs, R. Characterization of chromate-phosphate conversion layers on Al-alloys by electrochemical impedance spectroscopy (EIS) and optical measurements. Electrochim. Acta, 1993, 38(17), 2577-2580.
[http://dx.doi.org/10.1016/0013-4686(93)80155-S]
[124]
Fouladi, M.; Amadeh, A. Comparative study between novel magnesium phosphate and traditional zinc phosphate coatings. Mater. Lett., 2013, 98, 1-4.
[http://dx.doi.org/10.1016/j.matlet.2013.01.061]
[125]
Van Phuong, N.; Moon, S.; Chang, D.; Lee, K.H. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91. Appl. Surf. Sci., 2013, 264, 70-78.
[http://dx.doi.org/10.1016/j.apsusc.2012.09.119]
[126]
Oh, J-E.; Kim, Y-H. The corrosion resistance characteristics of Ni, Mn, and Zn phosphates in automotive body panel coatings. J. Ind. Eng. Chem., 2012, 18(3), 1082-1087.
[http://dx.doi.org/10.1016/j.jiec.2011.12.010]
[127]
El‐Ghaffar, M.A.; Youssef, E.; Ahmed, N. High performance anticorrosive paint formulations based on phosphate pigments; Pig Resin Technol, 2004.
[128]
Lenz, D.M.; Delamar, M.; Ferreira, C.A. Improvement of the anticorrosion properties of polypyrrole by zinc phosphate pigment incorporation. Prog. Org. Coat., 2007, 58(1), 64-69.
[http://dx.doi.org/10.1016/j.porgcoat.2006.12.002]
[129]
Hao, Y.; Liu, F.; Han, E-H.; Anjum, S.; Xu, G. The mechanism of inhibition by zinc phosphate in an epoxy coating. Corros. Sci., 2013, 69, 77-86.
[http://dx.doi.org/10.1016/j.corsci.2012.11.025]
[130]
Attar, N.; Tam, L.E.; McComb, D. Mechanical and physical properties of contemporary dental luting agents. J. Prosthet. Dent., 2003, 89(2), 127-134.
[http://dx.doi.org/10.1067/mpr.2003.20] [PMID: 12616231]
[131]
Otsuka, M.; Marunaka, S.; Matsuda, Y.; Ito, A.; Layrolle, P.; Naito, H.; Ichinose, N. Calcium level-responsive in vitro zinc release from zinc containing tricalcium phosphate (ZnTCP). J. Biomed. Mater. Res., 2000, 52(4), 819-824.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<819:AID-JBM27>3.0.CO;2-O] [PMID: 11033565]
[132]
Gerlach, A.; Vincent, B.; Lissac, M.; Esnouf, X.; Thollet, G. Distribution of zinc ions from orthophosphate cements at the cement-tooth interface in fixed dental prosthesis. Biomaterials, 1993, 14(10), 770-774.
[http://dx.doi.org/10.1016/0142-9612(93)90042-Z] [PMID: 8218727]
[133]
Bohlsen, F.; Kern, M. Clinical outcome of glass-fiber-reinforced crowns and fixed partial dentures: a three-year retrospective study. Quintessence Int., 2003, 34(7), 493-496.
[PMID: 12946066]
[134]
Hiraishi, N.; Kitasako, Y.; Nikaido, T.; Foxton, R.M.; Tagami, J.; Nomura, S. Acidity of conventional luting cements and their diffusion through bovine dentine. Int. Endod. J., 2003, 36(9), 622-628.
[http://dx.doi.org/10.1046/j.1365-2591.2003.00700.x] [PMID: 12950577]
[135]
Nicholson, J.W.; Czarnecka, B.; Limanowska-Shaw, H. The long-term interaction of dental cements with lactic acid solutions. J. Mater. Sci. Mater. Med., 1999, 10(8), 449-452.
[http://dx.doi.org/10.1023/A:1008991422909] [PMID: 15348110]
[136]
Wilson, A.D.; Kent, B.E.; Lewis, B.G. Zinc phosphate cements: chemical study of in vitro durability. J. Dent. Res., 1970, 49(5), 1049-1054.
[http://dx.doi.org/10.1177/00220345700490050801] [PMID: 5272087]
[137]
Uo, M.; Sjögren, G.; Sundh, A.; Watari, F.; Bergman, M.; Lerner, U. Cytotoxicity and bonding property of dental ceramics. Dent. Mater., 2003, 19(6), 487-492.
[http://dx.doi.org/10.1016/S0109-5641(02)00094-5] [PMID: 12837396]
[138]
Grey, N.; McCord, J. In Fracture resistance of crowns cemented with resin and zinc phosphate. J. Dent. Res., 2001, •••, 1152-1152.
[139]
Chao, G. Refinement of the crystal structure of parahopeite. Zeitschrift für Kristallogr. Cryst. Matter, 1969, 130(1-6), 261-266.
[140]
Yaglov, V. Some characteristics of dehydration of hydrates of 3d elements orthophosphates. Khim. Khim. Tekhnol, 1978, 13, 7-14.
[141]
Herschke, L.; Rottstegge, J.; Lieberwirth, I.; Wegner, G. Zinc phosphate as versatile material for potential biomedical applications Part 1. J. Mater. Sci. Mater. Med., 2006, 17(1), 81-94.
[http://dx.doi.org/10.1007/s10856-006-6332-4] [PMID: 16389475]
[142]
Malekmohammadi, S.; Hadadzadeh, H.; Rezakhani, S.; Amirghofran, Z. Design and synthesis of gatekeeper coated dendritic silica/titania mesoporous nanoparticles with sustained and controlled drug release properties for targeted synergetic chemosonodynamic therapy. ACS Biomater. Sci. Eng., 2019, 5(9), 4405-4415.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00237] [PMID: 33438406]
[143]
Rahimnejad, M.; Mokhtarian, N.; Ghasemi, M. Production of protein nanoparticles for food and drug delivery system. Afr. J. Biotechnol., 2009, 8(19)
[144]
Bastakoti, B.P.; Inuoe, M.; Yusa, S.; Liao, S-H.; Wu, K.C-W.; Nakashima, K.; Yamauchi, Y. A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility. Chem. Commun. (Camb.), 2012, 48(52), 6532-6534.
[http://dx.doi.org/10.1039/c2cc32279j] [PMID: 22622697]
[145]
Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater., 2012, 8(4), 1401-1421.
[http://dx.doi.org/10.1016/j.actbio.2011.11.017] [PMID: 22127225]
[146]
Wu, H.C.; Wang, T.W.; Bohn, M.C.; Lin, F.H.; Spector, M. Novel magnetic hydroxyapatite nanoparticles as non‐viral vectors for the glial cell line‐derived neurotrophic factor gene. Adv. Funct. Mater., 2010, 20(1), 67-77.
[http://dx.doi.org/10.1002/adfm.200901108]
[147]
Jahanshahi, M.; Najafpour, G.; Rahimnejad, M. Applying the Taguchi method for optimized fabrication of bovine serum albumin (BSA) nanoparticles as drug delivery vehicles. Afr. J. Biotechnol., 2008, 7(4)
[148]
Lin, K.; Zhou, Y.; Zhou, Y.; Qu, H.; Chen, F.; Zhu, Y.; Chang, J. Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: Surfactant-free hydrothermal synthesis, enhanced degradation and drug release. J. Mater. Chem., 2011, 21(41), 16558-16565.
[http://dx.doi.org/10.1039/c1jm12514a]
[149]
Xia, W.; Grandfield, K.; Schwenke, A.; Engqvist, H. Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres. Nanotechnology, 2011, 22(30), 305610.
[http://dx.doi.org/10.1088/0957-4484/22/30/305610] [PMID: 21730753]
[150]
Hambidge, K.M.; Krebs, N.F. Zinc deficiency: a special challenge. J. Nutr., 2007, 137(4), 1101-1105.
[http://dx.doi.org/10.1093/jn/137.4.1101] [PMID: 17374687]
[151]
Gammoh, N.Z.; Rink, L. Zinc and the immune system.Nutrition and Immunity; Springer, 2019, pp. 127-158.
[http://dx.doi.org/10.1007/978-3-030-16073-9_8]
[152]
Vallee, B.L.; Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev., 1993, 73(1), 79-118.
[http://dx.doi.org/10.1152/physrev.1993.73.1.79] [PMID: 8419966]
[153]
Maret, W. Zinc coordination environments in proteins determine zinc functions. J. Trace Elem. Med. Biol., 2005, 19(1), 7-12.
[http://dx.doi.org/10.1016/j.jtemb.2005.02.003] [PMID: 16240665]
[154]
Keen, C.L.; Gershwin, M.E. Zinc deficiency and immune function. Annu. Rev. Nutr., 1990, 10(1), 415-431.
[http://dx.doi.org/10.1146/annurev.nu.10.070190.002215] [PMID: 2200472]
[155]
Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol, 2007, 173(4), 677-702.
[http://dx.doi.org/10.1111/j.1469-8137.2007.01996.x] [PMID: 17286818]
[156]
DiSilvestro, R.A. Handbook of minerals as nutritional supplements; CRC Press, 2004.
[http://dx.doi.org/10.1201/9780203489673]
[157]
Tang, Y.; Chappell, H.F.; Dove, M.T.; Reeder, R.J.; Lee, Y.J. Zinc incorporation into hydroxylapatite. Biomaterials, 2009, 30(15), 2864-2872.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.043] [PMID: 19217156]
[158]
Venkatasubbu, G.D.; Ramasamy, S.; Ramakrishnan, V.; Kumar, J. Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin. Biotech, 2011, 1(3), 173-186.
[159]
Liu, P.; Zhu, B.; Yuan, X.; Tong, G.; Su, Y.; Zhu, X. Physiochemical properties and bioapplication of nano- and microsized hydroxy zinc phosphate particles modulated by reaction temperature J. Mater. Chem. B Mater. Biol. Med.,, 2015, 3(7), 1301-1312.
[http://dx.doi.org/10.1039/C4TB01049C] [PMID: 32264481]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy