Generic placeholder image

Recent Patents on Drug Delivery & Formulation

Editor-in-Chief

ISSN (Print): 1872-2113
ISSN (Online): 2212-4039

Review Article

Next Steps in 3D Printing of Fast Dissolving Oral Films for Commercial Production

Author(s): Touraj Ehtezazi*, Marwan Algellay and Alison Hardy

Volume 14, Issue 1, 2020

Page: [5 - 20] Pages: 16

DOI: 10.2174/1872211314666191230115851

Abstract

3D printing technique has been utilised to develop novel and complex drug delivery systems that are almost impossible to produce by employing conventional formulation techniques. For example, this technique may be employed to produce tablets or Fast Dissolving oral Films (FDFs) with multilayers of active ingredients, which are personalised to patient’s needs. In this article, we compared the production of FDFs by 3D printing to conventional methods such as solvent casting. Then, we evaluated the need for novel methods of producing fast dissolving oral films, and why 3D printing may be able to meet the shortfalls of FDF production. The challenges of producing 3D printed FDFs are identified at commercial scale by referring to the identification of suitable materials, hardware, qualitycontrol tests and Process Analytical Technology. In this paper, we discuss that the FDF market will grow to more than $1.3 billion per annum in the next few years and 3D printing of FDFs may share part of this market. Although companies are continuing to invest in technologies, which provide alternatives to standard drug delivery systems, the market for thin-film products is already well established. Market entry for a new technology such as 3D printing of FDFs will, therefore, be hard, unless, this technology proves to be a game changer. A few approaches are suggested in this paper.

Keywords: 3D printing, fused deposition modelling, extrusion, fast dissolving oral films, personalised medicine, drug delivery systems.

Graphical Abstract
[1]
Kyobula M, Adedeji A, Alexander MR, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release 2017; 261: 207-15.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.025] [PMID: 28668378]
[2]
Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 2014; 461(1-2): 105-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.021] [PMID: 24280018]
[3]
Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by Fused Deposition Modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol 2015; 30: 360-7.
[http://dx.doi.org/10.1016/j.jddst.2015.07.016]
[4]
Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 2016; 234: 41-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.034] [PMID: 27189134]
[5]
Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm 2016; 509(1-2): 255-63.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.036] [PMID: 27215535]
[6]
Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res 2017; 34(2): 427-37.
[http://dx.doi.org/10.1007/s11095-016-2073-3] [PMID: 27943014]
[7]
Li Q, Guan X, Cui M, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm 2018; 535(1-2): 325-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.037] [PMID: 29051121]
[8]
Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol 2017; 40: 164-71.
[http://dx.doi.org/10.1016/j.jddst.2017.06.008]
[9]
Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J Control Release 2017; 268: 40-8.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.003] [PMID: 28993169]
[10]
Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release 2017; 268: 10-8.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.008] [PMID: 29030223]
[11]
Jamróz W, Kurek M, Łyszczarz E, et al. 3D printed orodispersible films with Aripiprazole. Int J Pharm 2017; 533(2): 413-20.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.052] [PMID: 28552800]
[12]
Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci 2018; 107(4): 1076-85.
[http://dx.doi.org/10.1016/j.xphs.2017.11.019] [PMID: 29208374]
[13]
Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur J Pharm Sci 2018; 118: 134-43.
[http://dx.doi.org/10.1016/j.ejps.2018.03.010] [PMID: 29540300]
[14]
Afsana JV, Jain V, Haider N, Jain K. 3D printing in personalized drug delivery. Curr Pharm Des 2018; 24(42): 5062-71.
[http://dx.doi.org/10.2174/1381612825666190215122208] [PMID: 30767736]
[15]
Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm 2018; 548(1): 586-96.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.024] [PMID: 30033380]
[16]
Khan FA, Narasimhan K, Swathi CSV, et al. 3D printing technology in customized drug delivery system: current state of the art, prospective and the challenges. Curr Pharm Des 2018; 24(42): 5049-61.
[http://dx.doi.org/10.2174/1381612825666190110153742] [PMID: 30636582]
[17]
Edinger M, Jacobsen J, Bar-Shalom D, Rantanen J, Genina N. Analytical aspects of printed oral dosage forms. Int J Pharm 2018; 553(1-2): 97-108.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.030] [PMID: 30316794]
[18]
El Aita I, Ponsar H, Quodbach J. A critical review on 3D-printed dosage forms. Curr Pharm Des 2018; 24(42): 4957-78.
[http://dx.doi.org/10.2174/1381612825666181206124206] [PMID: 30520369]
[19]
Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release 2015; 217: 308-14.
[20]
Haring AP, Tong Y, Halper J, Johnson BN. Programming of multicomponent temporal release profiles in 3D printed polypills via core-shell, multilayer, and gradient concentration profiles. Adv Healthc Mater 2018; 7(16) e1800213
[http://dx.doi.org/10.1002/adhm.201800213] [PMID: 29888441]
[21]
Bhattacharyya N. The prevalence of dysphagia among adults in the United States. Otolaryngol Head Neck Surg 2014; 151(5): 765-9.
[http://dx.doi.org/10.1177/0194599814549156] [PMID: 25193514]
[22]
Tian Y, Visser JC, Klever JS, Woerdenbag HJ, Frijlink HW, Hinrichs WLJ. Orodispersible films based on blends of trehalose and pullulan for protein delivery. Eur J Pharm Biopharm 2018; 133: 104-11.
[http://dx.doi.org/10.1016/j.ejpb.2018.09.016] [PMID: 30273665]
[23]
Jani R, Patel D. Hot melt extrusion: An industrially feasible approach for casting orodispersible film. Asian J Pharm Sci 2015; 10(4): 292-305.
[http://dx.doi.org/10.1016/j.ajps.2015.03.002]
[24]
Cilurzo F, Cupone IE, Minghetti P, et al. Nicotine fast dissolving films made of maltodextrins: A feasibility study. AAPS PharmSciTech 2010; 11(4): 1511-7.
[http://dx.doi.org/10.1208/s12249-010-9525-6] [PMID: 20936440]
[25]
Repka MA, Gutta K, Prodduturi S, Munjal M, Stodghill SP. Characterization of cellulosic hot-melt extruded films containing lidocaine. Eur J Pharm Biopharm 2005; 59(1): 189-96.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.008] [PMID: 15567317]
[26]
Murata Y, Isobe T, Kofuji K, Nishida N, Kamaguchi R. Preparation of fast dissolving films for oral dosage from natural polysaccharides. Materials (Basel) 2010; 3(8): 4291-9.
[http://dx.doi.org/10.3390/ma3084291] [PMID: 28883330]
[27]
Musazzi UM, Selmin F, Ortenzi MA, et al. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm 2018; 551(1-2): 52-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.013] [PMID: 30205128]
[28]
Swainson WK. Method, medium and apparatus for producing three-dimensional figure product. US4041476A, 1971.
[29]
Hull CW. Apparatus for production of three-dimensional objects by stereolithography. US4575330A, 1984.
[30]
Xiong W, Zhou YS, He XN, et al. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Sci Appl 2012; 1 e6
[http://dx.doi.org/10.1038/lsa.2012.6]
[31]
Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus Horiz 2017; 60(5): 677-88.
[http://dx.doi.org/10.1016/j.bushor.2017.05.011]
[32]
Lamichhane S, Bashyal S, Keum T, et al. Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J Pharm Sci 14(5): 2019; 465- 479.
[33]
Martin GD, Hoath SD, Hutchings IM. Inkjet printing - the physics of manipulating liquid jets and drops. J Phys Conf Ser 2008; 105(1) 012001
[http://dx.doi.org/10.1088/1742-6596/105/1/012001]
[34]
Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing. J Control Release 2000; 66(1): 1-9.
[http://dx.doi.org/10.1016/S0168-3659(99)00225-4] [PMID: 10708873]
[35]
Shi K, Tan DK, Nokhodchi A, Maniruzzaman M. Drop-on-powder 3D printing of tablets with an anti-cancer drug, 5-fluorouracil. Pharmaceutics 2019; 11(4) E150
[http://dx.doi.org/10.3390/pharmaceutics11040150] [PMID: 30939760]
[36]
Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res 2011; 28(10): 2386-92.
[http://dx.doi.org/10.1007/s11095-011-0450-5] [PMID: 21544688]
[37]
Vuddanda PR, Alomari M, Dodoo CC, et al. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci 2018; 117: 80-7.
[http://dx.doi.org/10.1016/j.ejps.2018.02.002] [PMID: 29414676]
[38]
Eleftheriadis GK, Monou PK, Bouropoulos N, Fatouros DG. In vitro evaluation of 2D-printed edible films for the buccal delivery of diclofenac sodium. Materials (Basel) 2018; 11(5) E864
[http://dx.doi.org/10.3390/ma11050864] [PMID: 29789468]
[39]
Janssen EM, Schliephacke R, Breitenbach A, Breitkreutz J. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films. Int J Pharm 2013; 441(1-2): 818-25.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.023] [PMID: 23266759]
[40]
Genina N, Fors D, Vakili H, et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci 2012; 47(3): 615-23.
[http://dx.doi.org/10.1016/j.ejps.2012.07.020] [PMID: 22902482]
[41]
Kollamaram G, Hopkins SC, Glowacki BA, Croker DM, Walker GM. Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity. Eur J Pharm Sci 2018; 115: 248-57.
[http://dx.doi.org/10.1016/j.ejps.2018.01.036] [PMID: 29366961]
[42]
Planchette C, Pichler H, Wimmer-Teubenbacher M, et al. Printing medicines as orodispersible dosage forms: Effect of substrate on the printed micro-structure. Int J Pharm 2016; 509(1-2): 518-27.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.054] [PMID: 26541301]
[43]
Buanz ABM, Belaunde CC, Soutari N, Tuleu C, Gul MO, Gaisford S. Ink-jet printing versus solvent casting to prepare oral films: Effect on mechanical properties and physical stability. Int J Pharm 2015; 494(2): 611-8.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.032] [PMID: 25526674]
[44]
Trenfield SJ, Xian Tan H, Awad A, et al. Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. Int J Pharm 2019; 567118443
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.034]] [PMID: 31212052]
[45]
Thabet Y, Lunter D, Breitkreutz J. Continuous inkjet printing of enalapril maleate onto orodispersible film formulations. Int J Pharm 2018; 546(1-2): 180-7.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.064] [PMID: 29753906]
[46]
Iftimi L-D, Edinger M, Bar-Shalom D, Rantanen J, Genina N. Edible solid foams as porous substrates for inkjet-printable pharmaceuticals. Eur J Pharm Biopharm 2019; 136: 38-47.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.004] [PMID: 30630061]
[47]
Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm 2015; 96: 380-7.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.027] [PMID: 26277660]
[48]
Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 2014; 476(1-2): 88-92.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.044] [PMID: 25275937]
[49]
Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm 2015; 89: 157-62.
[50]
Solanki NG, Tahsin M, Shah AV, Serajuddin ATM. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and printability. J Pharm Sci 2018; 107(1): 390-401.
[http://dx.doi.org/10.1016/j.xphs.2017.10.021] [PMID: 29066279]
[51]
Verstraete G, Samaro A, Grymonpré W, et al. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm 2018; 536(1): 318-25.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.002] [PMID: 29217471]
[52]
Gioumouxouzis CI, Karavasili C, Fatouros DG. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov Today 2019; 24(2): 636-43.
[http://dx.doi.org/10.1016/j.drudis.2018.11.019] [PMID: 30503803]
[53]
Isreb A, Baj K, Wojsz M, Isreb M, Peak M, Alhnan MA. 3D printed oral theophylline doses with innovative ‘radiator-like’ design: Impact of polyethylene oxide (PEO) molecular weight. Int J Pharm 2019; 564: 98-105.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.017] [PMID: 30974194]
[54]
Gioumouxouzis CI, Eleftheriadis GK, Fatouros DG. Emerging 3D Printing Technologies to Develop Novel Pharmaceutical Formulations. In: Maniruzzaman M. (Ed). 3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing. John Wiley & Sons 2019; pp. 153-84.
[55]
Krause J, Bogdahn M, Schneider F, Koziolek M, Weitschies W. Design and characterization of a novel 3D printed pressure-controlled drug delivery system. Eur J Pharm Sci 2019; 140105060
[http://dx.doi.org/10.1016/j.ejps.2019.105060]] [PMID: 31499171]
[56]
Trenfield SJ, Goyanes A, Telford R, et al. 3D printed drug products: Non-destructive dose verification using a rapid point-and-shoot approach. Int J Pharm 2018; 549(1-2): 283-92.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.002] [PMID: 30077760]
[57]
Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 2017; 108: 39-50.
[http://dx.doi.org/10.1016/j.addr.2016.03.001] [PMID: 27001902]
[58]
Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan KW, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res 2016; 33(11): 2704-12.
[http://dx.doi.org/10.1007/s11095-016-1995-0] [PMID: 27506424]
[59]
Malaquias LFB, Schulte HL, Chaker JA, et al. Hot melt extrudates formulated using design space: one simple process for both palatability and dissolution rate improvement. J Pharm Sci 2018; 107(1): 286-96.
[http://dx.doi.org/10.1016/j.xphs.2017.08.014] [PMID: 28847477]
[60]
Khaled SA, Alexander MR, Irvine DJ, et al. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech 2018; 19(8): 3403-13.
[http://dx.doi.org/10.1208/s12249-018-1107-z] [PMID: 30097806]
[61]
Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 2015; 494(2): 643-50.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.067] [PMID: 26235921]
[62]
Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C Mater Biol Appl 2019; 104 109873
[http://dx.doi.org/10.1016/j.msec.2019.109873] [PMID: 31500054]
[63]
Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Int J Pharm 2019; 567 118471
[http://dx.doi.org/10.1016/j.ijpharm.2019.118471] [PMID: 31252147]
[64]
Zidan A, Alayoubi A, Asfari S, et al. Development of mechanistic models to identify critical formulation and process variables of pastes for 3D printing of modified release tablets. Int J Pharm 2019; 555: 109-23.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.044] [PMID: 30453019]
[65]
Jain A, Ahirwar HC, Tayal S, Mohanty PK. Fast dissolving oral films: a tabular update. J Drug Deliv Ther 2018; 8(4): 10-9.
[http://dx.doi.org/10.22270/jddt.v8i4.1724]
[66]
Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. J Control Release 2009; 139(2): 94-107.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.014] [PMID: 19559740]
[67]
Arya A, Chandra A, Sharma V, Pathak K. Fast dissolving oral films: an innovative drug delivery system and dosage form. Int J Chemtech Res 2010; 2(1): 576-83.
[68]
Shirvan AR, Bashari A, Hemmatinejad N. New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur Polym J 2019; 119: 541-50.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.07.010]
[69]
Grammen C, Van den Mooter G, Appeltans B, et al. Development and characterization of a solid dispersion film for the vaginal application of the anti-HIV microbicide UAMC01398. Int J Pharm 2014; 475(1-2): 238-44.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.054] [PMID: 25175729]
[70]
Shen BD, Shen CY, Yuan XD, et al. Development and characterization of an orodispersible film containing drug nanoparticles Eur J Pharm Biopharm 2013; 85(3 Pt B)(3, Part B): 1348-56
[http://dx.doi.org/10.1016/j.ejpb.2013.09.019] [PMID: 24103635]
[71]
Choudhary DR, Patel VA, Chhalotiya UK, Patel HV, Kundawala AJ. Development and characterization of pharmacokinetic parameters of fast-dissolving films containing levocetirizine. Sci Pharm 2012; 80(3): 779-87.
[http://dx.doi.org/10.3797/scipharm.1205-15] [PMID: 23008821]
[72]
Ghorwade VM. Formulation and evaluation of montelukast sodium fast dissolving films. RGUHS, Karnataka, 2011.
[73]
Nalluri BN, Sravani B, Anusha VS, Sribramhini R, Maheswari K. Development and evaluation of mouth dissolving films of sumatriptan succinate for better therapeutic efficacy. J Appl Pharm Sci 2013; 3(8): 161.
[74]
Chaudhary H, Gauri S, Rathee P, Kumar V. Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box–Behnken statistical design. Bull Fac Pharm Cairo Univ 2013; 51(2): 193-201.
[http://dx.doi.org/10.1016/j.bfopcu.2013.05.002]
[75]
Alayoubi A, Haynes L, Patil H, Daihom B, Helms R, Almoazen H. Development of a fast dissolving film of epinephrine hydrochloride as a potential anaphylactic treatment for pediatrics. Pharm Dev Technol 2017; 22(8): 1012-6.
[http://dx.doi.org/10.3109/10837450.2015.1131715] [PMID: 26740126]
[76]
Cilurzo F, Cupone IE, Minghetti P, Buratti S, Gennari CG, Montanari L. Diclofenac fast-dissolving film: Suppression of bitterness by a taste-sensing system. Drug Dev Ind Pharm 2011; 37(3): 252-9.
[http://dx.doi.org/10.3109/03639045.2010.505928] [PMID: 20704459]
[77]
Yeola GS, Darandale S, Khire A, Vavia PR. Fabrication and statistical optimization of a polysaccharide-based sublingual film of buprenorphine hydrochloride for breakthrough pain management: in vitro and in vivo performance. Drug Deliv Transl Res 2014; 4(2): 116-25.
[http://dx.doi.org/10.1007/s13346-013-0183-6] [PMID: 25786725]
[78]
Koland M, Sandeep V, Charyulu N. Fast dissolving sublingual films of ondansetron hydrochloride: Effect of additives on in vitro drug release and mucosal permeation. J Young Pharm 2010; 2(3): 216-22.
[http://dx.doi.org/10.4103/0975-1483.66790] [PMID: 21042474]
[79]
Tiwari A, Gangwar NK, Pathak K. Fast-dissolving ocular films of riboflavin acetate conjugate for treatment of keratoconus in UVA-CXL procedure: ex vivo permeation, hemolytic toxicity and apoptosis detection. Expert Opin Drug Deliv 2014; 11(3): 325-43.
[http://dx.doi.org/10.1517/17425247.2014.873028] [PMID: 24386903]
[80]
Sayed S, Ibrahim HK, Mohamed MI, El-Milligi MF. Fast-dissolving sublingual films of terbutaline sulfate: formulation and in vitro/in vivo evaluation. Mol Pharm 2013; 10(8): 2942-7.
[http://dx.doi.org/10.1021/mp4000713] [PMID: 23883311]
[81]
Krull SM, Ma Z, Li M, Davé RN, Bilgili E. Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement. Drug Dev Ind Pharm 2016; 42(7): 1073-85.
[http://dx.doi.org/10.3109/03639045.2015.1107094] [PMID: 26567632]
[82]
Carolina Visser J, Weggemans OAF, Boosman RJ, Loos KU, Frijlink HW, Woerdenbag HJ. Increased drug load and polymer compatibility of bilayered orodispersible films. Eur J Pharm Sci 2017; 107: 183-90.
[http://dx.doi.org/10.1016/j.ejps.2017.07.010] [PMID: 28709911]
[83]
Pechová V, Gajdziok J, Muselík J, Vetchý D. Development of orodispersible films containing benzydamine hydrochloride using a modified solvent casting method. AAPS PharmSciTech 2018; 19(6): 2509-18.
[http://dx.doi.org/10.1208/s12249-018-1088-y] [PMID: 29948980]
[84]
Velaga SP, Nikjoo D, Vuddanda PR. Experimental studies and modeling of the drying kinetics of multicomponent polymer films. AAPS PharmSciTech 2018; 19(1): 425-35.
[http://dx.doi.org/10.1208/s12249-017-0836-8] [PMID: 28762212]
[86]
European Medicines Agency. ICH guideline Q3C (R7) on impurities: guideline for residual solvents.. 2018.
[87]
Steiner D, Finke JH, Kwade A. SOFTs - Structured orodispersible film templates. Eur J Pharm Biopharm 2019; 137: 209-17.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.001] [PMID: 30836181]
[88]
Cilurzo F, Cupone IE, Minghetti P, Selmin F, Montanari L. Fast dissolving films made of maltodextrins. Eur J Pharm Biopharm 2008; 70(3): 895-900.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.032]
[89]
Manning CB. Melt extruded nicotine thin strips. WO2011081628A1.. 2009.
[90]
McGinity JW, Robinson JR. Effervescence polymeric film drug delivery system. US20010006677A1. 2001.
[91]
Fuisz RC. Smokeless tobacco product. US20100242978A1. 2010.
[92]
Chonkar AD, Rao JV, Managuli RS, et al. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur J Pharm Biopharm 2016; 103: 179-91.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.001] [PMID: 27063592]
[93]
El-Bary AA, Al Sharabi I, Haza’a BS. Effect of casting solvent, film-forming agent and solubilizer on orodispersible films of a polymorphic poorly soluble drug: An in vitro/in silico study. Drug Dev Ind Pharm 2019; 45(11): 1751-69.
[http://dx.doi.org/10.1080/03639045.2019.1656733] [PMID: 31416366]
[94]
Song Q, Guo X, Sun Y, Yang M. Anti-solvent precipitation method coupled electrospinning process to produce poorly water-soluble drug-loaded orodispersible films. AAPS PharmSciTech 2019; 20(7): 273.
[http://dx.doi.org/10.1208/s12249-019-1464-2] [PMID: 31385126]
[95]
Serrano DR, Fernandez-Garcia R, Mele M, Healy AM, Lalatsa A. Designing fast-dissolving orodispersible films of Amphotericin B for oropharyngeal candidiasis. Pharmaceutics 2019; 11(8) E369
[http://dx.doi.org/10.3390/pharmaceutics11080369] [PMID: 31374879]
[96]
Sjöholm E, Sandler N. Additive manufacturing of personalized orodispersible warfarin films. Int J Pharm 2019; 564: 117-23.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.018] [PMID: 30974195]
[97]
Talekar SD, Haware RV, Dave RH. Evaluation of self-nanoemulsifying drug delivery systems using multivariate methods to optimize permeability of captopril oral films. Eur J Pharm Sci 2019; 130: 215-24.
[http://dx.doi.org/10.1016/j.ejps.2019.01.039] [PMID: 30716381]
[98]
Musazzi UM, Dolci LS, Albertini B, Passerini N, Cilurzo F. A new melatonin oral delivery platform based on orodispersible films containing solid lipid microparticles. Int J Pharm 2019; 559: 280-8.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.046] [PMID: 30690132]
[99]
Pimparade MB, Vo A, Maurya AS, et al. Development and evaluation of an oral fast disintegrating anti-allergic film using hot-melt extrusion technology. Eur J Pharm Biopharm 2017; 119: 81-90.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.004] [PMID: 28596037]
[100]
Speer I, Lenhart V, Preis M, Breitkreutz J. Prolonged release from orodispersible films by incorporation of diclofenac-loaded micropellets. Int J Pharm 2019; 554: 149-60.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.013] [PMID: 30414477]
[101]
Karaman DS, Patrignani G, Rosqvist E, et al. Mesoporous silica nanoparticles facilitating the dissolution of poorly soluble drugs in orodispersible films. Eur J Pharm Sci 2018; 122: 152-9.
[http://dx.doi.org/10.1016/j.ejps.2018.06.027] [PMID: 29966736]
[102]
Musazzi UM, Selmin F, Franzé S, et al. Poly(methyl methacrylate) salt as film forming material to design orodispersible films. Eur J Pharm Sci 2018; 115: 37-42.
[http://dx.doi.org/10.1016/j.ejps.2018.01.019] [PMID: 29329745]
[103]
Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature 2016; 540(7633): 371-8.
[http://dx.doi.org/10.1038/nature21003] [PMID: 27974748]
[104]
Gaisford S, Verma A, Saunders M, Royall PG. Monitoring crystallisation of drugs from fast-dissolving oral films with isothermal calorimetry. Int J Pharm 2009; 380(1-2): 105-11.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.006] [PMID: 19596058]
[105]
Garsuch V, Breitkreutz J. Comparative investigations on different polymers for the preparation of fast-dissolving oral films. J Pharm Pharmacol 2010; 62(4): 539-45.
[http://dx.doi.org/10.1211/jpp.62.04.0018] [PMID: 20604845]
[106]
Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extendedrelease patient-tailored prednisolone tablets via Fused Deposition Modelling (FDM) 3D printing European journal of pharmaceutical sciences: Official journal of the European Federation for Pharmaceutical Sciences 2015; 68: 11-7.
[107]
Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ. Multimechanism oral dosage forms fabricated by three dimensional printing. J Control Release 2000; 66(1): 11-7.
[http://dx.doi.org/10.1016/S0168-3659(99)00224-2] [PMID: 10708874]
[108]
Robles-Martinez P, Xu X, Trenfield SJ, et al. 3D Printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics 2019; 11(6): 274.
[http://dx.doi.org/10.3390/pharmaceutics11060274] [PMID: 31212649]
[109]
Thabet Y, Breitkreutz J. Orodispersible films: Product transfer from lab-scale to continuous manufacturing. Int J Pharm 2018; 535(1-2): 285-92.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.021] [PMID: 29146537]
[110]
Jenke DR, Story J, Lalani R. Extractables/leachables from plastic tubing used in product manufacturing. Int J Pharm 2006; 315(1-2): 75-92.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.011] [PMID: 16563675]
[111]
Thabet Y, Lunter D, Breitkreutz J. Continuous manufacturing and analytical characterization of fixed-dose, multilayer orodispersible films. Eur J Pharm Sci 2018; 117: 236-44.
[http://dx.doi.org/10.1016/j.ejps.2018.02.030] [PMID: 29499348]
[112]
Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm J 2016; 24(5): 537-46.
[http://dx.doi.org/10.1016/j.jsps.2015.02.024] [PMID: 27752225]
[113]
Shang R, Liu C, Quan P, Zhao H, Fang L. Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction. Int J Pharm 2018; 545(1-2): 163-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.004] [PMID: 29729403]
[114]
Scarpa M, Paudel A, Kloprogge F, et al. Key acceptability attributes of orodispersible films. Eur J Pharm Biopharm 2018; 125: 131-40.
[http://dx.doi.org/10.1016/j.ejpb.2018.01.003] [PMID: 29355687]
[115]
Speer I, Preis M, Breitkreutz J. Prolonged drug release properties for orodispersible films by combining hot-melt extrusion and solvent casting methods. Eur J Pharm Biopharm 2018; 129: 66-73.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.023] [PMID: 29792911]
[116]
Steiner D, Finke JH, Kwade A. Instant ODFs - Development of an intermediate, nanoparticle-based product platform for individualized medication. Eur J Pharm Biopharm 2018; 126: 149-58.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.014] [PMID: 28414191]
[117]
Steiner D, Finke JH, Kwade A. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill. Int J Pharm 2016; 511(2): 804-13.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.058] [PMID: 27477101]
[118]
Speer I, Steiner D, Thabet Y, Breitkreutz J, Kwade A. Comparative study on disintegration methods for oral film preparations. Eur J Pharm Biopharm 2018; 132: 50-61.
[http://dx.doi.org/10.1016/j.ejpb.2018.09.005] [PMID: 30201569]
[119]
Adeleke OA, Tsai PC, Karry KM, Monama NO, Michniak-Kohn BB. Isoniazid-loaded orodispersible strips: Methodical design, optimization and in vitro-in silico characterization. Int J Pharm 2018; 547(1-2): 347-59.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.004] [PMID: 29879506]
[120]
Woertz C, Kleinebudde P. Development of orodispersible polymer films containing poorly water soluble active pharmaceutical ingredients with focus on different drug loadings and storage stability. Int J Pharm 2015; 493(1-2): 134-45.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.032] [PMID: 26216415]
[121]
Foo WC, Khong YM, Gokhale R, Chan SY. A novel unit-dose approach for the pharmaceutical compounding of an orodispersible film. Int J Pharm 2018; 539(1-2): 165-74.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.047] [PMID: 29414124]
[122]
Peh KK, Wong CF. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J Pharm Pharm Sci 1999; 2(2): 53-61.
[PMID: 10952770]
[123]
Khadra I, Obeid MA, Dunn C, et al. Characterisation and optimisation of diclofenac sodium orodispersible thin film formulation. Int J Pharm 2019; 561: 43-6.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.064] [PMID: 30772459]
[124]
Adrover A, Pedacchia A, Petralito S, Spera R. In vitro dissolution testing of oral thin films: A comparison between USP 1, USP 2 apparatuses and a new millifluidic flow-through device. Chem Eng Res Des 2015; 95: 173-8.
[http://dx.doi.org/10.1016/j.cherd.2014.10.020]
[125]
Krampe R, Sieber D, Pein-Hackelbusch M, Breitkreutz J. A new biorelevant dissolution method for orodispersible films. Eur J Pharm Biopharm 2016; 98: 20-5.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.012] [PMID: 26515261]
[126]
Satyanarayana DA, Keshavarao KP. Fast disintegrating films containing anastrozole as a dosage form for dysphagia patients. Arch Pharm Res 2012; 35(12): 2171-82.
[http://dx.doi.org/10.1007/s12272-012-1215-3] [PMID: 23263812]
[127]
Huynh N, Arabian N, Lieu D, Asatryan L, Davies DL. Utilizing an orally dissolving strip for pharmacological and toxicological studies: A simple and humane alternative to oral gavage for animals. J Vis Exp 2016; (109): e53770
[http://dx.doi.org/10.3791/53770] [PMID: 27078261]
[128]
Cilurzo F, Musazzi UM, Franzé S, Selmin F, Minghetti P. Orodispersible dosage forms: biopharmaceutical improvements and regulatory requirements. Drug Discov Today 2018; 23(2): 251-9.
[http://dx.doi.org/10.1016/j.drudis.2017.10.003] [PMID: 29030242]
[129]
Dumitrescu IB, Lupuliasa D, Drăgoi CM, et al. The age of pharmaceutical 3D printing. technological and therapeutical implications of additive manufacturing. Farmacia 2018; 66(3): 365-89.
[http://dx.doi.org/10.31925/farmacia.2018.3.1]
[130]
Karki S, Kim H, Na S-J, Shin D, Jo K, Lee J. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci 2016; 11(5): 559-74.
[http://dx.doi.org/10.1016/j.ajps.2016.05.004]
[131]
Borges AF, Silva C, Coelho JFJ, Simões S. Oral films: Current status and future perspectives II - Intellectual property, technologies and market needs. J Control Release 2015; 206: 108-21.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.012] [PMID: 25776737]
[132]
Targum SD, Milbauer AJ. The process of getting new drugs to market. Psychiatry (Edgmont Pa) 2008; 5(8): 57-60.
[PMID: 19727278]
[133]
Wartewig S, Neubert RHH. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv Drug Deliv Rev 2005; 57(8): 1144-70.
[http://dx.doi.org/10.1016/j.addr.2005.01.022] [PMID: 15885850]
[134]
Blanco M, Alcalá M. Content uniformity and tablet hardness testing of intact pharmaceutical tablets by near infrared spectroscopy: A contribution to process analytical technologies. Anal Chim Acta 2006; 557(1): 353-9.
[http://dx.doi.org/10.1016/j.aca.2005.09.070]
[135]
Edinger M, Bar-Shalom D, Rantanen J, Genina N. Visualization and non-destructive quantification of inkjet-printed pharmaceuticals on different substrates using raman spectroscopy and raman chemical imaging. Pharm Res 2017; 34(5): 1023-36.
[http://dx.doi.org/10.1007/s11095-017-2126-2] [PMID: 28251424]
[136]
Vakili H, Wickström H, Desai D, Preis M, Sandler N. Application of a handheld NIR spectrometer in prediction of drug content in inkjet printed orodispersible formulations containing prednisolone and levothyroxine. Int J Pharm 2017; 524(1-2): 414-23.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.014] [PMID: 28396245]
[137]
Donoso M, Kildsig DO, Ghaly ES. Prediction of tablet hardness and porosity using near-infrared diffuse reflectance spectroscopy as a nondestructive method. Pharm Dev Technol 2003; 8(4): 357-66.
[http://dx.doi.org/10.1081/PDT-120024689] [PMID: 14601960]
[138]
Xu X, Gupta A, Sayeed VA, Khan MA. Process analytical technology to understand the disintegration behavior of alendronate sodium tablets. J Pharm Sci 2013; 102(5): 1513-23.
[http://dx.doi.org/10.1002/jps.23488] [PMID: 23450666]

© 2024 Bentham Science Publishers | Privacy Policy