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Abstract

A vital and healthy dental pulp (DP) is required for teeth to remain functional throughout a lifespan. 
Appreciating its value for the tooth, the regeneration of the DP is a highly researched goal. While inflammation 
of the DP marks the beginning of an eventual necrosis, it is also the prerequisite for the regenerative events of 
neovascularisation, stem cell mobilisation and reparative dentine deposition. In the light of a pro-regenerative 
inflammatory process, the present review discusses the role of the macrophage population shift from pro- to 
anti-inflammatory in reversible versus irreversible pulpitis, while also analysing the overlooked contribution of 
pulp innervation and locally derived neuropeptides to the process. Then, the currently practiced (pulp capping 
and revascularisation) and researched (cell transplantation and cell homing) approaches for DP regeneration 
are discussed. Focusing on the role of cell homing in modulating inflammation, some potential strategies 
are highlighted to harness the inflammatory process for DP regeneration, mainly by reversing inflammation 
through macrophage induction. Next, some potential clinical applications are discussed – especially with 
capping materials – that could boost macrophage polarisation and complement system activation. Finally, 
current challenges facing the regeneration of the DP are presented, while underlining the importance of 
promoting an anti-inflammatory environment conducive to a regenerative process.
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Introduction

The DP occupies the core of the tooth and is the 
reason for its vitality. Although the DP might 
not be considered to contribute directly to tooth 
function – mastication, speech, aesthetic – a vital 
and healthy pulp is the reason why teeth remain 
functional throughout a lifetime. In fact, RCT – a 
tooth devitalising procedure and ironically also 
known as “tooth-saving” – is a radical treatment 
that results in the eventual loss or extraction of the 
tooth due to reinfection, secondary decay and leakage 
around crown margins and periodontal involvement 
(Friedman and Mor, 2004; Salehrabi and Rotstein, 
2004; Siqueira, 2001).
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accumulation and invasion of the DP, irreversible 
pulpitis is initiated followed by necrosis, root canal 
infection and periapical disease.
 Before tissue necrosis, prostaglandin-mediated 
pain impulses are manifested clinically as a pulp 
reaction through the transmission carried by sensory 
nerve endings that, along with the sympathetic 
nerve endings, also play a role in regulating the DP 
inflammatory process by neuropeptide secretion 
targeting membrane bound receptors located 
on different pulp structures (Zhan et al., 2020). 
Neuropeptides, such as substance P, stimulate the 
production of pro-inflammatory cytokines from 
human DP fibroblasts; while CGRP is associated 
with immunosuppression and increased expression 
of BMP-2, promoting dentineogenesis within the DP 
(Calland et al., 1997). CGRP was, in fact, reported 
to promote an osteodentine bridge following 
pulpotomy (Kline and Yu, 2009). Membrane-bound 
receptors for functional molecules from dental 
nerves are expressed on odontoblasts, fibroblasts, 
inflammatory cells and endothelial cells of capillaries, 
indicating a bidirectional cross-talks between these 
structures and nerve endings. Besides supporting the 
odontoblastic receptor theory of dentine sensitivity 
(Zhan et al., 2020), such intimate anatomical and 
functional interaction between pulpal nerve endings 
and other pulpal structures strongly suggests their 
intertwining functional relationship in all DP events, 
including inflammation and regeneration.

A mindset shift by a cell population shift: reversible 
versus irreversible pulpitis
For years, inflammation was a term describing a 
vicious event of pain, redness and hotness prior 
to tissue necrosis and was viewed as antagonistic 
to regeneration. Currently, within an ascending 
learning curve, it is known that the inflammatory 
reaction is a prerequisite to initiate the reparative 
function of progenitor cells implicated in tissue 
restoration (Goldberg et al., 2008). Basically, a (pro-)
inflammatory phase, when tissues are lost, timely 
shifts to an anti-inflammatory phase, characterised 
by proliferation and differentiation of stem cells for 
healing and regeneration, indicating the significant 
interrelationship between the inflammatory and 
regeneration processes (Cooper et al., 2010).
 During inflammation followed by wound healing 
and tissue remodelling, the cellular response – 
especially that of macrophages – is finely tuned 
(Roy, 2016). Following injuries – such as bacterial 
endotoxin invasion through dentineal tubules, deep 
cavity or crown preparation – a controlled and 
regulated inflammatory response cascades for pulp 
remodelling. However, if not controlled, for example 
in the case of bacterial invasion of the DP, a severe 
blow or long-standing insult, irreversible tissue 
damage takes place (Kawashima et al., 2005; Mutoh 
et al., 2009).
 The correlation between macrophage population 
shift, known as polarisation, and tissue remodelling 

 In 1951, Markley sensibly defined and approached 
dental decay [the most prevalent human disease 
(Cooper et al., 2010; Heng, 2016)]: “The loss of even a 
part of a human tooth should be considered a serious 
injury and that dentistry’s goal should be to preserve 
healthy, natural tooth structure” (Markley, 1951). 
This, together with the understanding of the tooth-
core’s invaluable role in maintaining lifelong tooth 
function, made DP regeneration a highly researched 
goal.
 Root canal treatment is an appealing alternative 
to tooth extraction, however, not without limitations. 
After RCT, the physico-mechanical properties 
of the tooth are altered and it becomes more 
prone to fracture (Vongsavan et al., 2000). Even 
with a protective covering restoration, micro 
leakage is highly prevalent, resulting in periodontal 
involvement and undetected decay due to its hidden 
location under the covering crown together with 
the lack of the alarming pain reaction (Lucarotti, 
2003; Ray and Trope, 1995). Yet, more importantly, 
tooth devitalisation eliminates the innate immune 
and repair responses of a vital pulp (Farges et al., 
2015; Hahn and Liewehr, 2007). This inflammation-
modulated immune response, orchestrated by pulp 
fibroblasts, odontoblasts, endothelial cells and even 
nerve fibres (Zhan et al., 2020), plays a key role in 
fighting against caries invasion as well as secretion 
of tertiary and reparative dentine (Farges et al., 2015).
 The present review highlights the role of 
inflammation in DP repair and regeneration, while 
underlining the potential clinical approaches 
that could reverse DP inflammation, mainly by 
macrophage induction, towards pulp regeneration.

The role of inflammation in pulpal injury and 
repair

Within the dynamic DP tissue, homeostasis is 
disrupted by several pathologies, such as bacterial 
toxins or actual bacterial invasion, thermal or 
electrical insults (galvanism) (Certosimo and 
O’Connor, 1996). With tooth decay progression and 
before bacteria reach the DP, the diffusion of bacterial 
toxins into dentine tubules to the pulp-dentine 
interface triggers inflammatory and immune events 
in the underlying DP. Namely, antigen-presenting 
dendritic cells strategically migrate to the odontoblast 
layer facing the invasion, followed by accumulation 
of T-lymphocytes, macrophages, neutrophils and 
B-lymphocytes. Reversible pulpitis develops while 
bacterial invasion and toxins concentration are 
limited and inflammation is mild (Goldberg et al., 
2008). In fact, the dentine-pulp complex responds 
to insults in a dose-effect manner, with low insult 
levels reversed to promote regeneration, while 
intense immune reaction irreversibly initiates tissue 
necrosis (Cooper et al., 2010). With fast, severe or long-
lasting (chronic) insults, odontoblasts are too slow to 
secrete reactionary dentine and, with further toxin 
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is under extensive investigation (Mahmoudi et al., 
2017; Yonehiro et al., 2012). During the inflammatory 
process, monocytes are recruited by neutrophils 
and, then, migrate to the injury site where they 
differentiate into macrophages (Swirski et al., 2009). 
Once recruited and differentiated, the macrophages 
generally attain M1 polarisation, a pro-inflammatory 
phenotype triggered by exposure to recruiting pro-
inflammatory cytokines such as IFN-γ (St Pierre 
and Tidball 1994; Tidball, 2005). In about 48 h, 
M1 macrophages reach their maximum number. 
Synthesis of IL-10 and IL-4 recruits and shifts the 
population to the M2 immuno-regulatory and anti-
inflammatory phenotype (Collins and Grounds 2001; 
Villalta et al., 2009).
 As reversible pulpitis is initiated and progresses, 
classically activated M1 macrophages mediate 

phagocytosis of bacteria, removal of dead cells 
and the initial exposure to the ECM-degradation 
products (Sicari et al., 2014). Once polarised to the M2 
phenotype, macrophages release anti-inflammatory 
cytokines that signal tissue remodelling and repair 
(Gordon, 2003; Gordon and Martinez, 2010) (Fig. 
1). As insult intensifies, interruption of the pro-
inflammatory events take place: neutrophil and 
macrophage infiltration, polarisation or transition 
are halted and, hence, remodelling or regeneration 
processes (Tidball and Wehling-Henricks, 2007). 
The interruption of the regeneration process, in 
the case of a DP injury, is manifested as activated 
osteo/odontoclastogenesis, modified vascular 
endothelial permeability with concomitant bone 
and root resorption (Lara et al., 2003; Zaky et al., 
2020). Targeting the sustainability of a reversible 

Fig. 1. Schematic drawing of pulpal events taking place in pro-inflammatory (left in red) and anti-
inflammatory (right in blue) responses and the potentially tailorable approaches to modulate inflammation 
to achieve regeneration. Numbers indicate separate events rather than an accurate chronological order. 
1: bacterial toxins (noxious stimulus) are introduced in dentineal tubules. 2: intratubular sensory nerve 
endings are the first to receive the noxious stimulus. 3: extravasating macrophages are signalled to an M1 
phenotype by IL-1a and IFN-δ. 4: pulp fibroblasts activate C3b complement to mediate phagocytosis of 
bacteria toxins by M1 macrophages while contributing to their population shifts to an M2 phenotypes. As 
toxins advance within the dentineal tubules to the dental pulp, they stimulate a cascade of events that signal 
the anti-inflammatory shift to tissue remodelling and repair. 5: while still within the dentineal tubules, 
toxins stimulate odontoblasts to secrete CCL2. 6: reaching the dental pulp, toxins stimulate CGRP release 
from sympathetic nerve endings. 7: as the noxious stimulus subsides (decay removed), the macrophage 
population shifts to M2 phenotype by IL-10 and IL-4 action. 8: areas of reparative dentine are an indication 
of an anti-inflammatory, pro-regenerative homeostasis.
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pulpitis from a clinical standpoint would be crucial to 
interrupt the pro-inflammatory events by induction 
of the anti-inflammatory macrophages as early as 
possible to prevent the progression and accumulation 
of a reversible damage.

The role of nerve endings and neuropeptides in 
anti-inflammatory macrophages induction

Neurogenic inflammation describes the direct 
participation of dental innervation in the innate 
immune response (Cooper et al., 2010). From the sub-
odontoblastic plexus of Rashkow in the coronal pulp, 
the sensory axons enter dentineal tubules to penetrate 
the dentine, whereas the sympathetic axons end in 
close proximity to odontoblast cell bodies (Ibuki 
et al., 1996; Shimeno et al., 2008). From within the 
tubules and receiving the bacterial toxin first-hand, 
the sensory group acts mainly in a pro-inflammatory 
manner initiating the pulpitis reaction. Progressing 
within the pulp, the sympathetic group, associated 
with the pulpal aspect of the odontoblastic layer, 
counteracts by an anti-inflammatory action. Such 
action includes the induction of anti-inflammatory 
macrophages by inhibition of cytokine IL-1a 
production, a bone-resorbing and a pro-inflammatory 
factor (Bletsa et al., 2004; Zhan et al., 2020).
 NGF, a neuropeptide involved in the regulation 
of growth, maintenance, proliferation and survival 
of pulpal neurons, is highly expressed at the 
caries invasion site (Mitsiadis et al., 2017). This 
takes place either directly by upregulation and 
even redistribution of its receptors during pulpitis 
(Woodnutt et al., 2000) or indirectly by nerve endings 
outgrowth in response to human pulp fibroblast 
through complement system activation (Chmilewsky 
et al., 2016). As bacterial toxins progress towards 
the pulp, the upregulation of NGF signals a pulpal 
reparative process to reverse inflammation towards 
regeneration.
 Another neuropeptide involved in neurogenic 
inflammation, CGRP, was found to promote 
odontoblast differentiation and maintain their 
function (Chiego et al., 1987). Together with pulpal 
Schwann cells, CGRP promotes macrophage 
population shift to the anti-inflammatory macrophage 
M2 phenotype to regulate the immune response 
(Caviedes-Bucheli et al., 2008). In fact, abundant 
colocalisation of Schwann cells and M2 macrophages 
is detected in the DP under deep active decay, with 
faint sensitivity and without episodes of spontaneous 
pain (Yoshiba et al., 2020).

Regeneration in endodontics

The history of root canal therapy date back to 1728 
when extirpation of the DP, using a small pin, was 
described (Cruse and Bellizzi, 1980). Since then, 
manipulating inside the tooth, i.e. endodontics, was 

coined as a branch of practicing dentistry; while the 
evolving instrumentation, techniques and obturation 
materials have been successful to make RCT an 
efficient treatment with more than a 95 % success 
rate (Naito, 2005). However, RCT is intrinsically a 
tooth devitalisation process whose success is judged 
solely by the asymptomatic retention of the tooth in 
place regardless of the ability of the pulp-dentine 
complex to react to its environment – a characteristic 
of a vital structure only. With that in mind, RCT is 
the resort when signs of irreversible pulpitis are 
confirmed; while approaches for vital pulp therapy 
are attempted to maintain the pulp vitality even with 
wavering reversibility. It is important to note that for 
RCT, vital pulp therapy or any regenerative therapy, 
it is of global consensus that clearing off bacterial 
infection, within the pulp canals or from tooth decay, 
is the key for treatment success.

Clinically practiced regenerative approaches
It is out of awareness and appreciation of the DP 
tissue that resorting to RCT is not a decision to 
be taken lightly. While considering the younger 
pulp favoured response (Bansal and Bansal, 2011), 
several approaches have been researched, developed 
and clinically applied to attempt regenerating the 
DP at different extents of its ailment: from direct 
pulp capping covering a pinpoint exposure to 
vascularisation and re-innervation of a fully lost root 
canal system.
 Direct pulp capping is a regenerative procedure 
and a clinical example of vital pulp therapy. When 
successful (93-100 %) (Akhlaghi and Khademi, 
2015), direct pulp capping confirms that pulpitis 
is in a reversible phase. The inflammatory process, 
compartmentalised within the exposed coronal pulp, 
can still be reversed. Stem precursors and pericytes 
can be mobilised and differentiate into odontoblasts 
to construct a reparative dentine bridge (Wells et al., 
2019).
 Revascularisation is another regenerative 
approach, also referred to as a regenerative 
endodontic procedure, aiming at revitalising a 
necrotic immature permanent tooth. The necrotic 
tooth is debrided and disinfected with sodium 
hypochlorite and calcium hydroxide paste while 
the open apex allows stimulation of apical bleeding 
and invasion of a blood clot with all its healing 
properties, including stem cell colonisation from 
the apical papilla and neo-vascularisation. Some 
challenges exist, including patient compliance, over-
manipulation and controlling infection. The success 
rate of this procedure ranges from bone healing, apex 
maturation (though unpredictable) and ultimately 
tooth positive response to vitality tests – indicating 
innervation (Ray et al., 2016; Staffoli et al., 2019)

DP regeneration strategies in mature teeth
In the case of adult mature teeth, pulp regeneration 
is primarily challenged by narrowing of the canal 
anatomy through dentineal sclerosis and the minimal 



188 www.ecmjournal.org

SH Zaky et al.                                                                                            Pulp regeneration inflammation modulation

Fig. 2. Different regenerative outcomes in canine (beagles) root canal model according to the absence 
or presence of an inflammatory process. (a) With inflammation: root canal of beagle lower premolar 
manipulated without introduction of obturation material (only blood clot formation) while inflammation 
was induced periodically (*: inflammatory plug). (f) Immunofluorescence of CD86, an anti-M1 macrophages 
marker (Zaky et al., 2020). (d) No regeneration or cell infiltration is observed while signs of destruction 
are seen as bone and root dentine (rd) resorption. (b) Without inflammation: blood-clot-filled root canal 
without periapical inflammation (g: CD86 negative) showing regenerative process and cell infiltration (e 
and arrowheads) are observed without bone or root resorption. (c) Inflammation modulation: Swine ECM-
filled root canal shows a regenerative process with cell infiltration (arrowheads) and more vascularisation 
(arrows) (Alqahtani et al., 2018). Although ectopic, bone/cementum-like intracanal calcifications (IC) within 
a remodelling pulp are a common observation in pulp regeneration literature and are considered signs 
of an active regenerative process (Alqahtani et al., 2018; Skoglund and Tronstad, 1981; Zaky et al., 2020). 
Hence, it is suggested to include cementogenesis inhibitor molecules while attempting pulp regeneration 
procedures by periapical cells homing (Zizka and Sedy, 2017). (a-c) Scale bars: 250 µm; (d,e) scale bars: 
100 µm; (f,g) scale bars: 50 µm. PA: periapical tissues. 
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opening of the anatomic apical foramen – challenging 
the development of an anastomosing blood supply 
with the alveolar vessels (Huang et al., 2020). Pulp 
regeneration in mature teeth is attempted by two 
approaches: cell transplantation and cell homing, 
both equally challenging.
 Cell transplantation involves delivering of donor 
cells. Several animal studies with transplanted cells 
have reported pulp regeneration with formation of 
an odontoblastic layer, blood vessels and evidence of 
neuronal regeneration employing DPSCs; either as a 
total population (Souron et al., 2014) or as an enriched 
subset (Iohara et al., 2009) in pulpotomy or full 
pulpectomy models (Iohara et al., 2020). To date, few 
human clinical trials report such promising results 
(Nakashima et al., 2017). Yet, controversy still exists 
as to whether these protocols are ready to replace 
conventional endodontic treatment procedures.
 Cell homing is defined as the active recruitment 
of stem/progenitor endogenous cells into an 
anatomical compartment (Laird et al., 2008). Studies 
attempting DP regeneration by cell homing also 
report promising results in terms of development 
of pulp-like tissue that develops from recruited 
periapical/periodontal cells through a manipulated 
and widened apical foramen to colonise the root 
canals up to the pulp chamber (Alqahtani et al., 2018; 
Eramo et al., 2018; Huang et al., 2020). Interestingly, a 
blood clot formation within the debrided root canal 
and chamber is enough to support the regeneration 
process that occurs regardless of the different types 
of inserted scaffolds (Zaky et al., 2020) (Fig. 2).
 While both approaches seem promising, the 
cell homing approach clearly circumvents, from 
a clinical standpoint, many of the challenges 
associated with cell transplantation. Undoubtedly, 
an acellular chair-side ready approach bypasses the 
hurdle of immunogenicity and the complexity of a 
substantial ex vivo cell manipulation and culture, 
hence is safer, more time and cost effective and more 
clinically applicable. Besides and more importantly, 
tissue regeneration by cell trafficking warrants the 
recruitment of all subsets of host cell populations 
and native growth factors to repopulate the defect 
and re-establish self-renewing stem-cell niches in a 
process mirroring physiological tissue remodelling 
and lifetime tissue turnover (Zaky and Cancedda, 
2009).

Cell homing and inflammation modulation

Regeneration by cell homing, also including 
revascularisation techniques in endodontic 
regenerative therapy, occurs primarily by the 
periapical cell populations trafficking trough the root 
apex. These populations, later engulfed in a clot of 
red blood cells and platelets, include lymphocytes, 
endothelial cells, neuronal precursors, fibroblasts, 
monocytes (originating from bone marrow and 
differentiating into macrophages) and progenitor/

stem cells mobilised as pericytes from the blood 
vessel walls. All together, along with cytokines 
and growth factors in the specific proportions, 
offer the favourable cocktail for wound healing in 
general terms and specifically for pulp-like tissue 
development when within dentineal walls.
 When it comes to regeneration, the role of 
macrophages in the process is key. Depending 
on the intensity of the bacterial infection or the 
extent of periapical instrumentation, cytokines 
trigger macrophagespolarisation from M1 pro-
inflammatory to M2 anti-inflammatory phenotype 
to phagocytise bacteria and dead cells and signal 
a regeneration process (Sicari et al., 2014). In fact, 
with extensive periapical inflammation and M1 
macrophage colonisation, dentine and root resorption 
are observed with no signs of regeneration within 
debrided root canals. In contrast, tissues show signs 
of remodelling and neovascularisation within the 
debrided pulp space when the periapex shows no 
signs of inflammation (Zaky et al., 2020).
 Interestingly, the current literature suggests that 
DP fibroblasts play an important role in inflammation 
modulation by local activation of the complement 
system. Bacterial endotoxins stimulate DP fibroblasts 
to signal the secretion of the antimicrobial C3b 
complement not only to fight bacterial invasion 
(Le Fournis et al., 2019) but also to participate in 
the macrophage population shift from M1 to M2 
macrophages (Bohlson et al., 2014) (Fig. 1).

Harnessing the inflammatory process and 
macrophage induction for DP regeneration

Taming the inflammatory process towards 
regeneration primarily involves the modulation of 
the process to sustain its anti-inflammatory phase 
over its pro-inflammatory phase. As macrophages are 
the main key players in this phase shift, the creation 
of a long-standing reversible pulpitis would be 
accomplished by induction of the M2 macrophages. 
Clinically, among several suggested approaches 
to modulate the inflammatory process – and the 
macrophages’ shift to enhance regeneration – are 
the employment of decellularised ECM and the 
introduction of modulation molecules (Agrawal et al., 
2010; Badylak et al., 2011; Frantz et al., 2010).
 Although a blood clot formed by the bleeding 
within the wounded tissues contains sufficient 
recruited elements for regeneration (Lehwald et 
al., 2020; Radke et al., 2018), Alqahtani et al. (2018) 
suggested an approach to modulate the inflammation 
process within the blood clot. The approach employs 
decellularised DP ECM to be introduced into a 
debrided root canal while the blood clot forms after 
canal manipulation. Such an approach has a twofold 
benefit: i) the introduction of the ECM with its 
constitutional trophic factors into the root canal space 
triggers periapical progenitor/stem cell trafficking 
for the regeneration process; ii) the ECM also plays 
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a role in inflammation modulation by triggering 
an anti-inflammatory host response that favours 
pulp regeneration (Agrawal et al., 2010; Badylak et 
al., 2011). The ECM would promote inflammatory 
modulation and create an antibacterial environment 
that supports DP regeneration (Fig. 2c) to reach 
homeostasis in the root canal and periapical tissues. 
The remodelling by ECM scaffolds is also attributed 
to the macrophage by-products released upon ECM 
digestion (Gordon and Taylor, 2005; Mantovani et al., 
2004; Valentin et al., 2009).
 Since macrophage modulation and polarisation 
play a crucial role in pulpal and periapical 
inflammation, it is intuitive to attempt DP 
regeneration by using macrophage-mobilising 
molecules to harness the inflammatory process for 
pulp regeneration. CGRP, a neuropeptide secreted 
by capsaicin-sensitive neurons in the DP, is known to 
promote proliferation of endothelial cells and pulpal 
fibroblasts and to increase DP vascular permeability 
(Bongenhielm et al., 1995; Zhan et al., 2020). CGRP is 
also a regulator of the immune response by acting as 
a signalling molecule for the M2 anti-inflammatory 
macrophage phenotype (Caviedes-Bucheli et al., 
2008). CGRP has been reported to have a protective 
role in the initial phase of apical periodontitis (Austah 
et al., 2016).
 Another molecule is CCL2, secreted by 
odontoblasts and diffused into the sub-odontoblast 
pulp area where they activate and mobilise various 
populations of immune cells (Farges et al., 2015). 
CCL2 has been shown to favour M2 macrophage 
polarisation (Zhuang et al., 2019) and to play a key 
role in the recruitment of circulating blood dendritic 
cells and their migration through the endothelial 
barrier (Goldberg et al., 2008) (Fig.1).

Potential clinical application

Clinically, it is crucial to narrow down to the 
inflammation modulation molecule that, upon 
delivery in contact or within the DP, can modulate 
and reverse the inflammation while signalling cell 
homing and differentiation. Such a molecule or 
combinations of molecules could be case-specific, 
depending on the treatment modalities needed 
to address a certain underlying pathosis, while 
considering the extent of irreversible damage to DP 
tissues.
 The polarisation of the macrophage population 
from M1 pro-inflammatory to M2 anti-inflammatory 
phenotypes would be the primary target of cytokines’ 
application to create a pro-regenerative environment 
(Colombo et al., 2014). CCL2 and CGRP molecules, 
among others, such as hypoxia-inducing factor 
(Colombo et al., 2020) and NGF neuropeptide 
(Mitsiadis et al., 2017), have the potential to leverage 
established regenerative applications such as 
direct pulp capping and revascularisation. These 
approaches rely on delivering a biocompatible, 

antibacterial, Ca2+-releasing material that mobilises 
bioactive molecules from the dentine (Cooper et al., 
2010). While some pulp-capping materials have been 
reported to have inflammation-modulating effects 
(Giraud et al., 2019), their functionalisation with 
modulating molecules could boost their regenerative 
properties in terms of macrophage polarisation 
and complement system activation. Arguably, 
adding inflammation-modulating molecules to the 
capping materials could even open new horizons for 
mature teeth pulpotomy, currently approached as a 
provisional rather than a full alternative for RCT (Li 
et al., 2019; Sadaf, 2020).
 Practically, the clinical delivery of these molecules 
would depend on their application modality, either 
as a single or cocktail combination. The relevant 
carrying vehicles currently researched both in vitro 
and in animal models are hydrogels (Colombo et al., 
2020), polymeric scaffolds (Soares et al., 2018), PLA 
microparticles (Zhuang et al., 2019), nano-structured 
biomaterial (Keller et al., 2015) and collagen, among 
many others (Colombo et al., 2014). ECM application 
could also represent the delivery of a naturally 
occurring combination of inflammation-mediating 
cytokines (Alqahtani et al., 2018).

Challenges and closing remarks

With the different approaches and strategies for DP 
regeneration, it is clear that clinicians and researchers 
are still at the experimentation phase and far from 
offering a feasible clinical alternative to the current 
devitalising RCT. A considerable part of the lag 
could be attributed to the limited understanding of 
pulp biology, together with the absence of precise 
diagnostic tools that can indicate the progression or 
rather the reversibility of the pulp condition early 
enough (Duncan and Cooper, 2020).
 With all the relatively advanced understanding 
of tooth development and its intricate biology, all 
current pulp regeneration approaches are attempting 
dentine and pulp regeneration in ways that do not 
mimic their original development. Throughout 
the epithelium-mesenchymal interaction, the pulp 
tissue develops simultaneously with and within the 
dentine while the dentine-secreting odontoblasts 
and their accompanying nerve endings recede along 
the maturing and mineralising dentine tissue pulpal 
surface from the dentineoenamel junction towards 
the pulp core (Farges et al., 2015; Zhan et al., 2020). As 
the fully developed tooth body has lost its soft tissue 
core, there is an attempt to re-generate the missing 
pulp tissue independently and in the absence of the 
timely orchestrated tooth development signalling 
molecules. Despite the observed potential of many 
approaches, among which inflammation modulation, 
this could be not the right way to proceed.
 Compared to connective tissue maturation and 
neovascularisation, the regeneration of neural tissue 
remains the most challenging part. A fully restored 
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and functional DP would need to acquire nerve 
regeneration in neural hierarchy and plexuses, 
not only to regain the alarming sensation of pain 
but primarily to regain its function in regulating 
inflammation and repair (Zhan et al., 2020).
 As for the current different strategies for pulp 
regeneration, a key is, after dismissing the infection, 
promoting an anti-inflammatory environment that is 
conducive to tissue regeneration at the dentine-pulp 
interface. This is primarily achieved by introducing 
molecules and cytokines that can modulate the 
initial pro-inflammatory reaction and mobilise its 
cell population into anti-inflammatory reaction for 
a pro-regeneration process. Undoubtedly, unfolding 
research will enlighten the understanding of the 
molecular and cellular interactions that orchestrate 
this intricate inflammation-regeneration coupling 
to develop novel therapies for DP regeneration and 
regeneration of the complex tooth-organ as a whole.
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