About the journal

Cobiss

Thermal Science 2009 Volume 13, Issue 3, Pages: 23-33
https://doi.org/10.2298/TSCI0903023J
Full text ( 2139 KB)
Cited by


Modeling the effect of spray/wall impingement on combustion process and emission of DI diesel engine

Jafarmadar Samad (Department of Mechanical Engineering, Urmia University the 'Sero' road, Urmia, Iran)
Khalilarya Shram (Department of Mechanical Engineering, Urmia University Urmia, Iran)
Shafee Sina (Department of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran)
Barzegar Ramin (Department of Mechanical Engineering, Urmia University, Urmia, Iran)

This work is presented to study the effect of spray impinging on the combustion process and emissions in a direct injection diesel engine at various engine speeds. Computations are carried out using a three-dimensional modeling for sprays, spray-wall interactions, flow field, emission, and combustion process. Results indicate an increase in engine speed leads to increased spray impinging (wall film formation), turbulence intensity and average wall temperature in cylinder. The enhanced air/fuel mixing and intensified evaporation of wall film decreases soot emission by reducing the extent of the fuel rich regions specially in impinging zones. Also at higher engine speeds, combustion is delayed and fuel is consumed in a shorter time period by the enhanced air and fuel mixing. The shorter combustion duration provides less available time for soot and NOx formations. However, only a few attempts have been made to address the effect of impingement of spray with piston walls on the emissions and combustion process. The results of model in addition to approving the corresponding data in the literature are also compared with the experimental data and shown good agreement.

Keywords: diesel engine, impinging, wall film, combustion, spray, emission