鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
力学特性
窒化処理したSCM435鋼の疲労強度特性に及ぼす表面化合物層の結晶構造の影響
髙木 眞一 殿塚 易行中村 紀夫伊藤 経教
著者情報
ジャーナル オープンアクセス HTML

2018 年 104 巻 10 号 p. 594-601

詳細
抄録

Effect of crystal structure of surface compound layer on the fatigue strength of nitrided SCM 435 steel was investigated. Specimens in which the crystal structure of the surface compound layer was controlled to γ’-Fe4N phase or ε-Fe2-3N phase were prepared by gas nitriding treatment capable of changing nitriding potential (KN). Axial fatigue test were conducted to the specimens. Even in each test specimen which has different crystal structure of the compound layer, distribution of residual stress and hardness in the nitrogen diffusion layer exhibited almost same values. It is revealed that fatigue strength significantly depends on crystal structure of surface compound layer. Specimens with γ’-Fe4N phase dominant shows substantially high fatigue strength comparing to specimens with ε-Fe2-3N phase dominant. In the fatigue test under stress ratio R=0, the specimen from which the surface compound layer was removed showed the highest strength. The fatigue strength is considered to be governed by the fracture strength of each compound layer. Namely, in the specimen with ε-Fe2-3N phase dominant, fatigue cracks are induced by fracture of brittle ε-Fe2-3N phase layer and progress into nitrogen diffusion layer due to stress intensity factor (ΔK) at crack tip exceeds the threshold of stress intensity factor range (ΔKth) in the matrix. On the other hand, in the case of γ’-Fe4N phase dominant, γ’-Fe4N phase with high toughness showed high fatigue strength due to suppress the crack initiation up to a higher stress level.

著者関連情報
© 2018 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top