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Abstract 

 

The Bayesian approach, which combines prior information about the quantity to be measured, available before the 

measurement, and additional information obtained from the measurement, is used in risk assessment in metrology. 

According to the binary decision rule in risk assessment, there are four outputs: the number of accepted and rejected 

measurements and the number of falsely accepted and falsely rejected measurements. A falsely rejected measurement 

represents the producer's risk, while a falsely accepted measurement represents the consumer's risk. These four cases in 

risk assessment lead us to confusion matrix. In this paper, we evaluate the most suitable prior distribution for modelling 

the risk for roundness deviation of the inner ring of the bearing. This quantity is always positive; therefore, the choice of 

prior is limited to those distributions that take only the positive value of the argument. The assessment of the most 

appropriate distribution was performed by measures derived from confusion matrix and ROC - AUC analysis. 

 

Keywords: consumer's risk; producer's risk; binary decision rule; confusion matrix; ROC curve  

 

 

1. Introduction 

 

There is no perfect measurement. Different sources of variability affect measurement results and measurement 

uncertainty. The measured values for the item of interest may or may not be within the interval of allowed values provided 

by the specifications for the specific product. The verification process of accepting or rejecting inappropriate measurement 

is the so-called conformity assessment rule. In this decision-making process, wrong decisions may occur that must be 

considered. There is a producer’s risk of rejecting of conforms measurement and consumer’s risk of accepting of non-

conforms measurement [1]. The reference document [2], adopted by the Joint Committee for Guides in Metrology 

prescribes the procedure for calculating the producer's risk and the consumer's risk. When calculating the risk, a Bayesian 

approach is used. This approach combines information obtained by measurement and assumptions about the distribution 

of parameters that describe the measured data. Measurement data are usually assumed to belong to a normal distribution 

and are modelled by using a likelihood function. The risk assessment depends on the a priori distribution of the parameters. 

Different numbers of accepted, rejected, falsely accepted (consumer's risk) and falsely rejected products (producer's risk) 

are obtained for different priors. Based on these four outputs, it is possible to form a confusion matrix, a well-known term 

from machine learning. The aim of this paper is to use metrics associated to confusion matrix to estimate the most suitable 

prior distribution for risk assessment. The prior distribution selection was carried out for a real study case of risk modelling 

for roundness deviation of the inner ring of the bearing. 
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2. Background of risk calculation 

 

The Bayesian approach to risk assessment in metrology combines two sources of information. One type of information 

about the measured variable 𝑌 comes from the a priori experience of the measurer himself. The item of interest, measured 

quantity 𝑌, can take the values denoted by 𝜂, and is treated as a random variable with a probability distribution function 

(PDF), denoted by 𝑔0(𝜂). Two parameters are associated to the measured value 𝑌: best estimate �̅� = 𝜇, and standard 

uncertainty 𝑢0 = 𝑠. This information can be evaluated before measurement performing. Another source of information 

are the measurement results given by the random variable 𝑌𝑚. According to [3], the standard measurement uncertainty 

𝑢𝑚, and the value of the measured quantity 𝜂𝑚, are associated to the measurement results. Measurement data are modelled 

via likelihood function ℎ(𝜂𝑚|𝜂), by normal PDF. This function, for given 𝜂𝑚, depends on η, and it can be calculated 

from: 

ℎ(𝜂𝑚|𝜂)=
1

𝑢𝑚√2𝜋
exp [− 1

2
(

𝜂𝑚−𝜂

𝑢𝑚
)

2
] (1) 

 

As a result of Bayes' rule, the posterior distribution is written as 

𝑔(𝜂|𝜂𝑚) = 𝐶𝑔0(𝜂)ℎ(𝜂𝑚|𝜂), (2) 

 

where 𝐶 is the normalization constant chosen such that ∫ 𝑔(𝜂| 𝜂𝑚)𝑑𝜂 = 1
∞

−∞
.  

There are two types of risk: specific and global risk. The specific producer’s risk is related with conformance 

probability 𝑝𝑐, the probability that the item of interest is within the interval of permissible value, i.e., within the tolerance 

interval [𝑇𝐿 , 𝑇𝑈]. Symbols 𝑇𝐿  and 𝑇𝑈 are for the lower and upper limit of the tolerance interval, respectively. Conformance 

probability is given by 

 

𝑝𝑐 = ∫ 𝑔(𝜂|𝜂𝑚)𝑑𝜂
𝑇𝑈

𝑇𝐿

 (3) 

 

Probability 𝑝�̅� that an item of interest is non-confirmed can be calculated as 

 

𝑝�̅� = 1 − 𝑝𝑐 (4) 

 

Another important interval is the acceptance interval [𝐴𝐿 , 𝐴𝑈], that is, the interval of permissible values for the 

measured quantity. Symbols 𝐴𝐿 and 𝐴𝑈 stands for the lower and upper limit of the acceptance interval, respectively. 

Depending on the problem under consideration, the tolerance interval and the acceptance interval can be in several 

different relationships [4]. The acceptance interval may be entirely within the tolerance interval, and separated from it, 

from both sides, by a guard band of width w. On this way, the consumer's risk is minimized. If the tolerance interval is 

within the acceptance interval, the producer's risk is minimized. By placing a guard band between the acceptance interval 

and the tolerance interval, the probability of making a wrong decision is reduced. From the natural requirements set for 

the measured quantity, it is possible to define one side tolerance interval when the measured values are limited from below 

with lower tolerance limit 𝑇𝐿 , or from above with upper tolerance limit 𝑇𝑈 (Figure 1).  

 
 

Fig. 1. One-sided tolerance interval bounded with upper limit [4] 

 

The situation shown in Figure 1 corresponds to the case of risk assessment for roundness deviation of the inner ring of 

the bearing. For the given upper limit of the tolerance interval 𝑇𝑈, the upper limit of the acceptance interval 𝐴𝑈 is 

determined. The width of guard band is equal to 

 

𝑤 = 𝑇𝑈 − 𝐴𝑈 = 2𝑟𝑢𝑚, (5) 

 

where the multiplier  𝑟 is in the range from −1 to 1.  
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3. Global consumer’s and producer’s risk 

 

If the true value 𝑌 of the item of interest is outside the tolerance interval, and the measured value 𝑌𝑚 is within the 

acceptance interval, the global consumer's risk is given by  

 

𝑅𝐶 = ∫ ∫ 𝑔0(𝜂)ℎ(𝜂𝑚|𝜂)𝑑𝜂𝑚𝑑𝜂 + ∫ ∫ 𝑔0(𝜂)ℎ(𝜂𝑚|𝜂)𝑑𝜂𝑚𝑑𝜂
𝐴𝑈

𝐴𝐿

∞

𝑇𝑈

𝐴𝑈

𝐴𝐿

𝑇𝐿

−∞

 (6) 

 

If the true value 𝑌 of item of the interest is within the tolerance interval, and the measured value 𝑌𝑚  is outside the 

acceptance interval, producer's risk is given by  

 

𝑅𝑃 = ∫ ∫ 𝑔0(𝜂)ℎ(𝜂𝑚|𝜂)𝑑𝜂𝑚𝑑𝜂 + ∫ ∫ 𝑔0(𝜂)ℎ(𝜂𝑚|𝜂)𝑑𝜂𝑚𝑑𝜂
𝑇𝑈

𝑇𝐿

∞

𝐴𝑈

𝑇𝑈

𝑇𝐿

𝐴𝐿

−∞

 (7) 

 

Consumer’s risk is associated with false accepted or false positive (FP) measurements while producer’s risk is 

associated with false rejected or false negative (FN) measurements. For labelling are used the notation FP and FN, the 

standard notation in machine learning. The result of the consumer's and producer's risk calculation is most often expressed 

in percentages. The number of false positive measurements or products could be found by multiplying the 𝑅𝐶 value by 

100, 1000 or 10000, depending on how many products have to be checked. In this paper, the calculation was performed 

for 10000 products. In this case, the number of false positive products is equal to 𝐹𝑃 = 10000 ∙ 𝑅𝐶. The number of falsely 

rejected products is counted as 𝐹𝑁 = 10000 ∙ 𝑅𝑝. The total number of conformed products is equal to 10000 ∙ 𝑝𝑐. From 

here, the number of accepted, or true positive (TP) products is equal to 𝑇𝑃 = 10000 ∙ 𝑝𝑐 − 𝐹𝑁, while the number of 

rejected, i.e., true negative products (TN) is equal to 𝑇𝑁 = 10000 ∙ 𝑝�̅� − 𝐹𝑃. According to this binary decision rule, four 

values that form the confusion matrix are obtained (Figure 2).  

 

 
 

Fig. 2. Confusion matrix for risks calculation 

 

4. Basic assumptions 

 

The roundness deviation of the inner ring of the bearing, with a diameter of 𝐷 = 80 mm, was measured. According 

to the specifications for these rings, the tolerance for roundness deviation is in the range from 0 − 25 μm. The determined 

deviation from roundness amounts to �̅� = 16 μm, with a standard deviation equal to 𝑢0 = 5 μm. Measurement of the 

deviation from roundness was carried out by an automated system for contact dimensional measurement of the bearing 

ring. The system enables 100 % control, storage and analysis of data, and separation of bad bearing rings from good ones. 

By monitoring the mean values and ranges with a control chart, it was determined that the process is stable (under control). 

The standard uncertainty of measurement results for roundness deviation is 𝑢𝑚 = 1 μm.  
For the given data, nine prior distributions were chosen: four non-parametric distributions, two one-parameter 

distributions and three two-parameter distributions. The parameters of the selected distributions were determined by using 

the arithmetic mean of the roundness deviation �̅� and the standard deviation 𝑢0. These two quantities are ignored with 

non-parametric distributions. With one-parameter distributions, the standard deviation is ignored. The estimation of 

parameters, for one-parameter and two-parameter distributions is determined according to the formulas that can be found 

in [5]. Parameters calculated for the selected distributions are shown in Table 1 
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Prior Parameters Arguments 𝒑𝒄 𝑰𝑹𝑻 AUC 

Uniform, U[0, 26.3213] − 𝜂 ≥ 0 0.9498 0.0529 0.9847 

Uniform, U[0, 50] − 𝜂 ≥ 0 0.50 1 0.9988 

Cauchy − 𝜂 ≥ 0 0.9873 0.0129 0.9999 

Gibrat − 𝜂 > 0 0.9994 0.0006 1 

Rayleigh, R(α) 𝛼 = 12.8 𝜂 ≥ 0 0.8520 0.0174 0.9972 

Maxwell, M(α) 𝛼 = 10.025 𝜂 ≥ 0 0.8986 0.1128 0.9963 

Gamma, Г(α, λ) 𝛼 = 10.24 , 𝜆 = 0.64 𝜂 > 0 0.9498 0.0529 0.9964 

Beta, B(α, β) 𝛼 = 10.24, 𝛽 = 639978.52 𝜂 > 0 0.9498 0.0529 0.9964 

Truncated normal, TN(μ, σ) 𝜇 = 16.0119 , 𝜎 = 4.9809   𝜂 ≥ 0 0.9643 0.0370 0.9949 

 

Table 1. Prior information 

 

Given that the risk of roundness deviation is assessing, chosen are distributions that take positive values of the 

argument, and that allows a small amount of measured values equal to zero so that 𝜂 ≥ 0. Also are selected prior 

distributions where the probability that the measured values are equal to zero is negligible, and 𝜂 > 0.  

Next step in risk assessment is the equidistant subdivision of the [−1, 1] interval, which is the domain of the 

multiplicative factor r. The subdivision with the threshold value equal to 0.1 gives the 21 nodes. For each node, the upper 

limit of the acceptance interval is found out. According to the (5), the step of changing the value for the upper limit of the 

acceptance interval is equal to 0.2 μm. The method allows estimation of the limit of the acceptance interval, which is 

lower than the upper limit of the tolerance interval, as well as the determination of the limit of the acceptance interval, 

which is higher than the upper limit of the tolerance interval. In this case, the range for the acceptance limit goes from 23 

μm, in the case when r = 1, to 27 μm, for r = −1. Considering the given tolerance interval for risk calculation of roundness 

deviation, allowed values are in the range from 23 μm to 25 μm. All data required for risk calculation according to the (6) 

and (7) were determined on this way. For the selected prior distribution, and for each of the 21st subdivision nodes, one 

confusion matrix is generated. 

 

5. Comparison with machine learning 

 

The creating a confusion matrix in risk assessment does not need a large amount of data divided into a training set and 

a test set, as in machine learning. Only four data are using for the creating confusion matrix: best estimate �̅�, and standard 

uncertainty 𝑢0 for the item of interest 𝑌 (which can be set up before measurement according to our prior beliefs), the 

standard measurement uncertainty 𝑢𝑚, associated to measurement data, and upper tolerance limit 𝑇𝑈 . In comparison with 

machine learning, can be said that in risk assessment, these four data are formed a training set. Based on these four data 

and given threshold of the upper limit of the acceptance interval, by using (6) and (7), confusion matrixes are generated. 

In this paper, each confusion matrix contains 10000 data. In risk assessment, confusion matrix gives a comparison 

between true and measured values. Equation (6) and (7) for the consumer's and the producer's risk estimating are 

classifiers used to orders data into classes. And these are also the rules that enable the prediction of the number of TP, 

TN, FP and FN products for a given size of the output data set. A confusion matrix of type 2 × 2 has two classes. In risk 

assessment, we can talk about the classes "inside" and "outside" of a specific interval. The difference compared to machine 

learning is that when assessing risk, we distinguish between the intervals to which true and measured values belong. We 

are talking about measurements that are "inside tolerance interval" and "outside tolerance interval" for true values and 

"inside acceptance interval" and "outside acceptance interval" for measured values. Several different algorithms are used 

for binary classification of data in machine learning [6]. Some of the most famous are: Naive Bayes algorithm, logistic 

regression, k-nearest neighbours, support vector machine, decision tree and neural network. Equation (6) and (7) for 

ordering into classes, are most similar in origin to the Gaussian Naive Bayes classifier. Both, machine learning and risk 

assessment combine prior distribution, and the likelihood function for the normal distribution. 

Depending on the prior distribution, confusion matrix in risk assessment can contain balanced or imbalanced data. In 

machine learning, imbalanced data represent a problem. Almost all standard machine learning algorithms give a good and 

reasonable result only for the balanced data [7]. In metrology, imbalanced data are not only allowed, but they are also 

desirable. With a well-performed measurement, there is always a disproportion between the number of accepted and the 

number of rejected products. In the production process, it is required that the number of accepted products that meet the 

specifications greatly exceeds the number of products that do not meet the required standards. We will define several 

different ways in which we can verify that data are imbalanced. In metrology, we are interested in conformed measurement 

or products. In this paper, we take the "inside tolerance interval" class for the majority class, and the "outside tolerance 

interval" class for the minority class. In that case, the size of the majority class is the same as the number of confirmed 

products, and the size of the minority class is equivalent to the number of non-conformed products. We define imbalanced 

ratio, or skew, as the ratio of the number of products in the minority class to the number of products belonging to the 

majority class [8]. The ratio refers to data that is inside or outside the tolerance interval and is denoted with 𝐼𝑅𝑇. This 

ratio provides data on the balance of data in risk assessment. If the 𝐼𝑅𝑇 is equal to 1, data are balanced, and if the 𝐼𝑅𝑇  is 

close to zero then data are imbalanced. The results for 𝐼𝑅𝑇 , for selected priors, are presented in Table 1. 
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The  𝐼𝑅𝑇  determined in this way is unique for all confusion matrix generated for different thresholds of the upper limit 

of the acceptance interval. Data balance can also be checked by determining the ratio of the number of products that are 

"outside the acceptance interval" to the number of products or measurements that are "within the acceptance interval". 

This ratio is denoted with 𝐼𝑅𝐴. The ratio is not unique and changes with the change in the value of the upper limit of the 

acceptance interval (Figure 3a).  The third way of checking data balance is possible by forming the TN/TP ratio. This 

ratio is also not unique and its value changes with a change in the value of the upper limit of the acceptance interval 

(Figure 3b). For imbalanced data, the ratios 𝐼𝑅𝐴 and TN/TP take on small values close to zero, and for balanced data they 

can be greater than 1. In metrology, as a result of the risk assessment, we want to have as many true positive products and 

as few true negative products as possible. Which means that we are always interested in imbalanced data. On the other 

hand, a perfect separation of products into those that are TP and those that are TN in metrology is not allowed, in the 

sense that all measurements are classified into these two groups. This means that it is not allowed that the values of FP 

and FN are both at the same time equal to zero. It is always assumed that there is a certain measurement uncertainty and 

a certain number of unacceptable measurements, whether they are of the FP or FN type.  

 

 
 

Fig. 3. Imbalanced ratio,  a) 𝐼𝑅𝐴,  b) TN/TP 

 

6. Results and analysis 

 

The values of TP, TN, FP, and FN in the generated confusion matrix are different for different values of the upper 

limit of the acceptance interval. These matrices serve for the selection of the appropriate prior distribution. The assessment 

of the appropriate prior distribution was performed using metrics associated with confusion matrix. Three characteristic 

metrics: accuracy, precision and recall are calculated as follows: 

 

accuracy = (TP + TN)/(TP + FN + FP + TN) (8) 

 

precision = TP/(TP + FP) (9) 

 

recall = TP/(TP + FN) (10) 

 

Accuracy is metrics that tell how many rings are correctly classified into TP and TN categories in relation to the total 

amount of data. This metric is extremely sensitive to imbalanced data [9]. In the case of imbalanced data desirable in 

metrology, the number of data classified in the TN category is negligibly small, and it is valid that TP≫TN. According 

to (8), for such a value relationship between TP and TN, the accuracy actually provides a prediction of the number of 

rings classified in the TP category in relation to the total amount of data, Figure 4a. This is true for all chosen priors 

except for the uniform distribution defined on the interval [0, 50]. According to Table 1, Figure 3a and Figure 3b, the 

uniform distribution U[0, 50] is the only one of the selected distributions that has balanced data. The 𝐼𝑅𝑇 value for this 

distribution is the highest and is equivalent to 1. Compared to all other distributions, this distribution takes the highest 

values for the ratios 𝐼𝑅𝐴 and TN/TP over the entire range for the upper limit of the acceptance interval. According to 

Figure 4a, the accuracy for U[0, 50] is generally higher than the accuracy of the one-parameter distributions: Rayleigh 

and Maxwell distributions, but it is lower than the accuracy of the two-parameter distributions: truncated normal, gamma 

and beta. 
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Although the accuracy metric has a high value for U[0, 50], according to the requirements set in metrology, we cannot 

say that this prior is good for risk assessment in the case of roundness deviation of the inner bearing ring. In each of the 

figures presented in this paper, the graphs for the gamma and beta distributions completely coincide on the interval [24, 

26]. On the interval [23, 24], the gamma distribution has higher values for 𝑅𝑐, that is, a larger number of FP rings 

compared to the beta distribution, and therefore a smaller number of TP rings. On the interval of [26, 27] gamma compared 

to beta distribution has smaller values for 𝑅𝑃, that is, the number of FR rings. Given that this difference is negligible, of 

the order of 10−4, we can consider that the gamma and beta distributions have the same behaviour over the entire range 

for 𝐴𝑈. 
 

 
 

Fig. 4. a) Accuracy,  b) Precision,  c) Recall  

 

For all distributions, accuracy increases for 𝐴𝑈 ∈ [23, 25] and decreases for 𝐴𝑈 ∈ [25, 27]. The Rayleigh’s 

distribution on the interval [23, 24.5] has a slightly higher accuracy than the Maxwell’s distribution. Of the two-parameter 

distributions, beta and gamma distributions have higher accuracy than the truncated normal distribution. The Cauchy’s 

and Gibart’s distribution, among the all chosen non-parametric distributions, achieve the highest values for all three 

metrics, Figure 4. The smallest values for accuracy over the entire range for upper acceptance limit are achieved by the 

uniform distribution U[0, 26.3213]. This distribution is artificially generated so that the conformance probability, on the 

interval [0, 25], for this distribution, is equal to 0.9498 and has the same value as the conformance probability for the 

gamma and beta distributions. 

The precision measure, according to (9), gives a prediction of the number of rings classified in the TP category in 

relation to the total number of rings from the "inside acceptance interval" class. As the upper limit of the acceptance 

interval increases and the width of the guard band decreases, the number of rings classified in the TP category increases, 

but the number FP in the denominator of expression (9) also increases, therefore the precision decreases for all 

distributions on the interval [23, 27]. Given that data for U[0, 50] are balanced, the precision for this distribution is the 

lowest, Figure 4b. Rayleigh's distribution achieves slightly lower values compared to Maxwell's. Truncated normal 

distribution achieves slightly higher values for precision, compared to beta and gamma distribution. 

 The recall measure, according to (10), gives a prediction of the number of rings classified in the TP category in 

relation to the total number of conformed rings. As the upper limit of the acceptance interval increases, the number of TP 

increases, but a bearing ring number classified in the FN category decreases, therefore the recall for all priori distribution 

increases on the interval [23, 27]. According to the recall measure, both uniform distribution U[0, 50] and U[0, 26.3213] 

show almost the same behaviour. Their graphs overlap, unlike the graphs for accuracy and precision. The difference 

between the precision metrics values, taken by these two distributions, is negligible, and amounts to 10−4.  
The true negative rate (TNR) metric provides a prediction of the number of rings classified as TN in relation to the 

total number of non-conformed rings and can be calculated as: 

 

TNR = TN/(FP + TN) (11) 

  

Given that the number of rings classified in the TN category decreases as the upper limit of the acceptance interval 

increases, and the number of rings from the FP category increases, the TNR decreases on the interval [23, 27], for all 

distributions, Figure 5a.  
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Fig. 5. a) True negative rate,  b) Maximum probability of correct prediction,  c) ROC curves 

 

On the interval [23, 25], the Gibrat’s distribution has the highest values for TNR, compared to all other distributions. 

The TNR for Gibrat’s distribution decreases “stepwise” on the interval [25, 27], which, according to the assumptions, is 

not an interval of allowed values. Among all selected distributions, according to all selected metrics, the Gibrat's 

distribution is the distribution that best separates rings into categories TP and TN, with a few rings in categories FP and 

FN. Unlike other distributions, the number of FP and FN rings, for the Gibrat distribution, is either 0 or 1 or 2. That is 

why the graph of this distribution is stepwise, Figures 5a, 5b, 6b, 6c. A similar stepwise shape, but to a lesser extent, have 

the Cauchy’s distribution, Figures 5a and 5b. 

In order to determine the maximum probability of correct prediction (MPCP) the false negative rate (FNR) and the 

false positive rate (FPR) are defined as following: 

 

FNR = FN/(TP + FN) (12) 

 

FPR = FP/(FP + TN) (13) 

 

The false negative rate gives the number of rings classified in the FN category in relation to the total number of 

conformed rings. The false positive rate gives the number of rings classified in the FP category in relation to the total 

number of non-conformed rings. Maximum probability of correct prediction is a measure associated with the confusion 

matrix that tells us what the maximum probability is that we did not choose the FP and FN ring. It is defined as: 

 

MPCP = (1 − FPR)(1 − TNR) (14) 

 

This measure allows us to determine the maximum upper limit of the acceptance interval for each individual 

distribution, Figure 5b. The results are as follows: According to the MPCP, the upper limit of the acceptance interval for 

U[0, 26.3213] is 𝐴𝑈 = 23.4, the associated risks are 𝑅𝐶 = 0.0864 %, and 𝑅𝑃 = 6.17 %. For the uniform distribution, 

U[0, 50] holds 𝐴𝑈 = 25, 𝑅𝐶 = 0.8 %, 𝑅𝑃 = 0.8 %. It is about balanced data, so this result is expected. For the Cauchy 

distribution holds  𝐴𝑈 = 23.6, 𝑅𝐶 = 0.0037 %, 𝑅𝑃 = 0.16 %. Gibrat distribution: 𝐴𝑈 = 25, 𝑅𝐶 = 0.0033 %, 𝑅𝑃 =
0.0040 %. In this case, MPCP is equal to 1. Rayleigh distribution: 𝐴𝑈 = 24, 𝑅𝐶 = 0.18 %, 𝑅𝑃 = 2.71 %, Maxwell's 

distribution: 𝐴𝑈 = 24, 𝑅𝐶 = 0.17 %, 𝑅𝑃 = 2.77 %. The Rayleigh and Maxwell distributions are both one-parameter 

distributions that reach the maximum value for MPCP at 𝐴𝑈 = 24, but for that value, the consumer risk for Maxwell 

distribution is lower compared to Rayleigh distribution. For the gamma distribution holds 𝐴𝑈 = 23.6, 𝑅𝐶 = 0.0522 %, 

𝑅𝑃 = 2.93 %, Beta distribution: 𝐴𝑈 = 23.6, 𝑅𝐶 = 0.0523 %, 𝑅𝑃 = 2.94 %, and truncated normal distribution: 𝐴𝑈 =
23.4, 𝑅𝐶 = 0.0331 %,  𝑅𝑃 = 3.77 %.  

One of the methods by which we can evaluate the behaviour of the prior is Receiver Operating Characteristic (ROC) 

analysis, Figure 5b. Area under ROC Curve (AUC) is a measure which tells how TPR changes with increasing of FPR. 

This measure also isn't sensitive to imbalanced data. 
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If the ROC curve is closer to the upper left corner, the AUC value is higher. If the AUC is equal to 0.5, it represents 

chance, while the value 1 corresponds to perfect classification. Values below 0.5 are not considered [10]. For the selected 

priors, the AUC values are shown in Table 1. The AUC number for the Gibrat distribution is equal to 1. It is followed by 

the Cauchy distribution with an AUC number equal to 0.9999. The uniform distribution U[0.50] with balanced data has 

a surprisingly large value for the AUC number, equivalent to 0.9988. As said before, this distribution is not suitable for 

risk assessment. The behaviour of priors is also analyzed for three other known metrics associated with confusion matrix: 

F1 score, kappa statistics and Matthew’s correlation coefficient (MCC), Figure 6.  

 

 
 

Fig. 6.  a) F1 score,  b) Kappa,  c) Matthew’s correlation coefficient 

 

These metrics are calculated as follows: 

 

F1 = 2 ∗ (precision ∗ recall)/(precision + recall) (15) 

 

kappa = 2 ∗ (TP ∗ TN − FN ∗ FP)/((TP + FP) ∗ (FP + TN) + (𝑇𝑃 + 𝐹𝑁) ∗ (FN
+ TN)) 

 
(16) 

 

MCC = ((TP ∗ TN) − (FP ∗ FN))/√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁) (17) 

 

The F1 score is the harmonic mean of the precision and recall metrics. It is a metric that is suitable for unbalanced 

data such as those encountered in metrology, in the case when the number of rings of the bearing classified in the TP 

category is much higher compared to the number of rings classified in the TN category. The values for the F1 score are 

in the range from 0 to 1. If the F1 score is equal to one, we are talking about the perfect separation of each ring into the 

appropriate class. If the F1 value is equal to 0, the model poorly classifies the measurements (rings) into the appropriate 

classes. According to the F1 score metric, Gibrat's and Cauchy's distributions best classify the rings into the corresponding 

classes, Figure 6a. They are followed by two-parameter distributions, and then followed one-parameter distributions. In 

the end are, as were expected, uniform distributions as poor classifiers. 

 

The kappa statistic is a measure of agreement between predicted and observed data. Both measures: Kappa statistic 

and MCC take values in the range from -1 to 1. All values of those measures greater than 0.8 are considered to represent 

strong agreement [11]. The priors with values lower than 0.8 are U[0, 26. 3213], and partially truncated normal 

distribution, Figures 6a, 6b. The kappa statistics and MCC gives the same arrangement of priors for the ring of bearing 

classification, only the values of the kappa statistic are slightly smaller compared to the MCC measure. The balanced data 

associated with U[0, 50] distribution have higher values of the MCC and kappa statistic. The uniform distribution U[0, 

50] and the Cauchy’s distribution assume almost the same values. The maximum absolute difference between the values 

taken by these two distributions is of the order 10−3 in the favour of the U[0, 50] distribution. 
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7. Conclusion 

 

Among all selected priors and according to all selected metrics associated with confusion matrix, the Gibrat 

distribution is imposed as the best choice for prior distribution in risk assessment. This prior is also the best choice among 

all those priors where it is implied that the argument of the distribution is 𝜂 > 0. If a small measurement value equal to 

zero is allowed, that is,  𝜂 ≥ 0  is valid, then the Cauchy distribution is the best choice for the prior distribution. The 

Gibrat's and Cauchy's distribution are also the best choice among all the tested non-parametric priors. In metrology, we 

choose a non-parametric uniform prior if we do not want to influence the results of the risk assessment with our personal 

belief or if we believe that each of the measured values is equally likely, and we do not want to favour any one value over 

another. According to the performed analysis, the uniform distribution U[0, 50] is not a recommended distribution for the 

risk assessment because it generates balanced data in the confusion matrix. The uniform distribution U[0, 26. 3213] is 

also not appropriate prior for risk estimation. On all tested metrics, this prior is almost always low-graded. The AUC 

number for this prior is the lowest one compared to all other priors. One-parameter distributions for risk assessment should 

only be chosen when data for the standard uncertainty 𝑢0 are not available, and there is no other choice. For all analyzed 

metrics, the results for the Rayleigh and Maxwell distributions are in between of the results for the chosen two-parametric 

and one-parametric distributions. If all the necessary data are available, as the best estimate �̅� and standard uncertainty 𝑢0, 

and if it is necessary to include them in the risk assessment, then two-parameter distributions are the best choice. The 

gamma or beta distribution are appropriate for risk assessment if the argument values are strictly positive values, and the 

truncated normal distribution is appropriate if the proportion of measured values equal to zero is significant. 

It remains to be seen how changing the basic parameters used in risk assessment will affect the appearance of the 

confusion matrix and the selected metrics. And will changing the default parameters affect the choice of prior. Also, one 

of the future stages in the research will be the application of machine learning techniques to the data generated in this 

way. Models trained on imbalanced data will easily recognize data belonging to the majority class, but will not recognize 

data belonging to the minority class. Therefore, it will be necessary to apply machine learning algorithms that take into 

account the unbalancing of the data or to apply data balancing techniques such as data class weighting and various over 

and under-sampling techniques. 
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