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Abstract 

In recent years, some e-commerce companies such as Amazon have adopted the cargo-to-person 

picking mode to improve their pickup efficiency. Under this mode, a shelf can store several types of 

goods and a type of goods can be placed on some shelves. When orders arrive, the warehouse robots 

move one shelf or more containing the ordered items to a fixed platform, and the pickers select the 

items from the shelves. It is very important to decide which shelves should be moved to increase 

picking efficiency. This paper addresses the problem of optimal movable-shelf selection for the cargo-

to-person picking mode. The goal of this study is to minimize the total time (costs) of moving the 

selected shelves to finish a batch of orders. We model this problem using 0-1 linear programming and 

show that the problem is NP-hard. Furthermore, we propose a three-stage hybrid heuristic algorithm 

with polynomial complexity to solve it. We conduct numerical experiments to show the efficiency of 

this algorithm. 
(Received, processed and accepted by the Chinese Representative Office.) 
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1. INTRODUCTION 

In recent years, e-commerce has developed rapidly, and online sales have greatly increased, 

requiring the support of fast and efficient logistics. Different from traditional offline logistics, 

e-commerce logistics are characterized by variety [1], high frequency and small batches. To 

enhance the efficiency of order-picking, the designers of the Kiva system proposed a new 

picking mode: cargo-to-person. Based on this mode, they developed a new warehouse 

management system – Kiva. This system uses storage shelves which is movable and can be 

moved by robots. Moving the shelves containing products in a batch of orders to the pickers 

has increased warehousing efficiency greatly and improved flexibility and accountability 

simultaneously [2]. In March 2012, Amazon spent $775 million to buy the Kiva system, 

which it used in its warehouse management. Picking efficiency has greatly increased since 

then, and picking costs have been shown to help save $458 million to $916 million annually. 

      The layout of warehouses that use a cargo-to-person picking mode is depicted in Fig. 1. 

The movable shelves, on which goods are stored according to predetermined rules, are 

arranged in the upper part of Fig. 1. Each shelf can store several types of goods, and every 

type of goods can be stored on multiple shelves [3]. The working platform is located in the 

lower left corner, and the robots’ parking and charging area is in the lower right corner. When 

orders arrive, they are partitioned into several batches according to predetermined rules. For 

each batch of orders, one shelf or more is selected and moved to the working platform by 

robots. After the workers pick items from these shelves, the shelves are returned to their 

original place. In the cargo-to-person picking mode, consumer goods that sell quickly might 

be placed on multiple shelves [4, 5] to increase picking efficiency and reduce the moving time 

needed for selected shelves. Shelf selection for a given batch of orders is a key issue for the 

cargo-to-person picking mode. This paper addresses this problem. 
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Figure 1: The layout of a warehouse with cargo-to-person picking mode. 

Although the Kiva system has worked well in Amazon’s warehouses, there are still some 

problems need to be studied [2]. The designers of the Kiva system called for researchers to 

study the problems related to the cargo-to-person picking mode such as order-batching 

problems, movable-shelf selection problems, task-assignment and robot-motion planning 

problems, etc. [3, 4]. Among these problems, task-assignment and robot-motion planning 

problems have been studied extensively [5-9], but fewer studies have been conducted on 

order-batching problems and movable-shelf selection problems. 

Although there are few studies of the picking methods used in the cargo-to-person 

picking mode, the picking methods under the classical person-to-cargo picking mode are 

well-studied [10-12]. In the person-to-cargo picking mode, the picking process consists of the 

following steps: order-batching, sequencing and routing, and sorting [10]. 

The order-batching problem is a special clustering problem, and most research about this 

problem focuses on designing efficient algorithms for different objective functions [10-12]. 

Pan et al. [13] developed an order-batching approach for a pick-and-pass system. Öncan [14] 

introduced mixed-integer programming formulations for traversal, return and midpoint 

routing policies, respectively, and designed some approximate algorithms for them. 

Menéndez et al. [15] designed a two-stage variable neighbourhood search method for the 

order-batching problem. Henn [16] studied the problem of minimizing the total delay for 

picking orders. 

The sequencing and routing steps in the person-to-cargo method are very important since 

they consume more than 50 % of the total order-processing time. The static sequencing and 

routing problems are similar to the TSP and are NP-hard, and the dynamic sequencing and 

routing problem is more difficult. Most research on this problem focuses on designing 

efficient algorithms [10-12]. Lu et al. [17] studied dynamic order-picking route problem and 

proposed a new routing algorithm for it. Hong and Kim [18] introduced a route-selecting 

order-batching model with the S-shape routing method on the parallel-aisle order-picking 

problem. Schrotenboer et al. [19] proposed hybrid genetic algorithms for route determination 

that entail simultaneous pickup of consumers’ orders and storage of returned products. 

Since order-batching, sequencing and routing, and sorting problems are correlated, some 

studies have addressed the integration of these processes. Chen et al. [20] developed a 

nonlinear mixed-integer optimization model to study the integration including order-batching, 

batch sequencing, and pickers' routing. Chen et al. [21] proposed a heuristic approach for an 

integration problem of batch-picking and picker-routing problem. 

http://www.sciencedirect.com/science/article/pii/S0377221714009485
http://www.tandfonline.com/author/Schrotenboer%2C+Albert+H
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Comparing the operational processes in a cargo-to-person mode and those in a person-to-

cargo mode, we can find that if movable shelves are selected, the task-assignment and robot-

motion planning problems in the cargo-to-person mode are similar to the picking-routing 

problem in the person-to-cargo mode. In the person-to-cargo mode, the locations of items to 

be picked are determined for a given batch of orders. Pickers want to find optimal picking 

routes that pass the locations of the selected items. However, in the cargo-to-person mode, 

there are multiple strategies for selecting movable shelves to pick the items in a batch of 

orders. The optimal combination of shelves should be selected to be moved before assigning 

tasks to the robots and planning routes for them. Hence, the optimal movable-shelves 

selection problem in the cargo-to-person mode is a new problem that does not exist in the 

person-to-cargo mode. 

The optimal movable-shelf selection problem is a new combinatorial optimization prob-

lem, although its objective function is similar to that of the weighted set covering problem 

[22], since the constraints of these two problems are different. As we show in Section 2, the 

weighted set covering problem is a special case of the movable-shelf selection problem.  

In this paper, we study the optimal movable-shelf selection problem in the cargo-to-

person picking mode considering the types and the quantities of goods in a batch of orders, 

the types and quantities of goods placed on the shelves, and the time needed to move each 

shelf. The goal is to minimize the total moving time. We model this problem using 0-1 linear 

programming and prove that the problem is NP-hard. A hybrid heuristic algorithm with poly-

nomial complexity O(MK
3
) is designed for solving the model. We also conduct numerical 

experiments to demonstrate the effectiveness and efficiency of the model and algorithm. 
This paper is arranged as follows: We state the problem and the corresponding 

mathematical model in Section 2. In Section 3, we state the algorithm for the problem, and 

discuss its complexity and worst-case analysis. In Section 4, an example is given to illustrate 

the algorithm. Extensive numerical experiments are conducted to demonstrate the 

effectiveness and efficiency of the model and algorithm in Section 5. Further conclusions and 

discussions are given in Section 6. 

2. MATHEMATICAL MODEL AND BASIC PROPERTIES 

Consider M types of goods and K movable shelves in a warehouse. Several types of goods 

might be stored on one shelf, and one type of goods might be stored on several shelves. 

Suppose that the quantity of goods i (i = 1, 2, …, M) stored on the j
th

 (j =1, 2, …, K) shelf is 

aij (aij  0). The round-trip time for moving shelf j from its location to the picking platform is 

wj. Given a batch of orders to be picked, the quantity of goods i in the batch of orders is qi  

(qi  0) (i = 1, 2, …, M). For shelf j = 1, 2, …, K, the quantity of goods in the batch of orders 

might be qi > aij. To pick all items in a batch of orders, we want to determine which shelves 

should be moved to minimize the total round-trip time. 

The notations used in this paper are listed as follows: 

Rj = (a1j, a2j, …, aMj)
T
 (j = 1, 2, …, K): vector of goods’ quantities on the shelf j; 

Q = (q1, q2, …, qM)
T
: vector of goods’ quantities in the batch of orders to be picked; 

max
1
max i

i M
q q

 
 ; 

Pj = (p1j, p2j, …, pMj)
T
 (j = 1, 2, …, K): vector of quantities of the goods that will be picked 

from shelf j. Then, pij = min {aij, qi}; 

1

M

j ij

i

b p


 : total quantity of all types of goods that should be picked up from shelf j if 

shelf j is moved to the picking platform; 
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Uj = (u1j, u2j, …, uMj)
T
, 

1 0

0

ij

ij

p
u

otherwise

 
 


，

，
; 

1

M

j ij

i

c u


 : the number of types of goods that can be picked from shelf j; 

max j
j

g c : the maximum number of types of goods that can be picked from one shelf; 

W = (w1, w2, …, wK): the vector of the round-trip time; 

S: the set of selected shelves to move, which corresponds to a feasible solution; 

F: the set of candidates that have one or more types of goods to be picked; 

N: the set of shelves that have no goods to be picked; 

Cost: the total time for moving all selected shelves. 

The decision variables are defined as follows: 

1

0
j

, shelf j is selected  to move
x

otherwise


 


 

，
 j = 1, 2, …, K. 

We can formulate the optimal movable-shelf selection problem as the following 0-1 

programming: 

     
    (1) 

           

The objective function is the total round-trip time of moving all selected shelves. 

Constraints (2) ensure that all items in the orders can be picked up from the selected shelves. 

Constraints (3) are the binary constraints on the decision variables. 

For the model (IP), if aij = 0 or 1, and qi = 1, the quantity of each type of goods on one 

shelf is at most 1, and the quantity of each type of goods in the batch of orders is exactly 1, 

the problem is reduced to the well-studied WSCP[23]. If aij = 0 or 1, qi = 1 and wj = 1, then the 

problem is reduced to the classical set cover problem (SCP)[24]. Therefore, the model (IP) 

includes both SCP and WSCP as special cases. 

It is well-known that WSCP is strongly NP-hard when some sets are allowed to have more 

than two elements [22]. Therefore, the problem (IP) is also strongly NP-hard when more than 

two types of goods are stored on a shelf. Since most shelves store more than two types of 

goods in a cargo-to-person picking mode [3], the problem studied in this paper is strongly 

NP-hard. 

It is well-known that there are some heuristic algorithms for SCP and WSCP [22, 23, 25-

28], and their worst-case approximate ratio is not very good. The problem (IP) is more 

complicated since the constraints coefficient matrices of SCP and WSCP are a 0-1 matrix, but 

the constraint coefficient matrix of the problem (IP) is no longer a 0-1 matrix. 

3. THE HYBRID HEURISTIC ALGORITHM 

Since the optimal movable-shelf selection problem is strongly NP-hard, for the small-scale 

problem, we can use some algorithms, such as branch and bound algorithms, to solve it. 

However, for large-scale practical problems that contain a large number of shelves and goods, 

the exact algorithms are time-consuming. Therefore, it is necessary to design a fast, efficient 

heuristic approach to get an approximate solution. In the following, we shall design a hybrid 

heuristic method to get an approximate optimal solution. 
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3.1  The philosophy of the hybrid heuristic algorithm 

The hybrid heuristic algorithm consists of three stages. The first stage is to find a feasible 

solution using a heuristic algorithm. A feasible solution entails a set of movable shelves from 

which all items in the batch of orders can be picked. The second stage is to delete redundant 

shelves from the feasible solution to enhance its precision. The third stage adopts an exchange 

strategy to further improve the solution precision. That is, for each unselected shelf, we add 

the shelf to the solution and delete the redundant shelves. If the objective function of the new 

solution is smaller than that of the original one, we execute this exchange strategy; otherwise, 

we do not. 

3.2  The algorithm 

Input: The number of types of goods M, the number of shelves K, the quantity vector of 

goods stored on a shelf Rj = (a1j, a2j, …, aMj)
T
 (j = 1, 2, …, K), the quantity vector of goods in 

the batch of orders to be picked Q = (q1, q2, …, qM)
T
, and the round-trip time to move shelf j to 

the picking platform wj (j = 1, 2, …, K). 

      Initialization: Let F = {1, 2, …, K}, S = , and N = . Set Cost = 0. 

      Stage 1. Find a feasible solution.  

 Step 1.1 For each j  F 

Calculate Pj = (p1j, p2j, …, pMj)
T
, where pij = min {aij, qi}, i = 1, 2,…, M 

1

M

j ij

i

b p


  

If bj = 0, \{ }; { }F F j N N j    

else 

( )
j

j

j

w
rate P

b
  

 Step 1.2 Set  ( )*

j
j F

j arg min rate P


  and 

{ }*S S j , { }*F F \ j , Cost = Cost + wj*, Q = Q – Pj* 

 Step 1.3 If Q  0 and F  , go to Step 1.1; else, go to Stage 2. 

      Stage 2. Delete the redundant shelves from the selected set S. 

 Step 2.1 For each j  S 

If 
\{ }

t

t S j

R Q


  then \{ }, { }S S j F F j  . 

      Stage 3. Adopt the exchange strategy to improve the quality of the solution further. 

 Step 3.1 For each k F N , add shelf k to S and delete the redundant shelves from S. 

( ) { }SS k S k U ; 

TF = ; 

Tcost = 0; 

For every ( ) \{ }j SS k k  

  If 
( )\{ }

t

t SS k j

R Q


 , 

( ) ( ) \{ }, { }SS k SS k j TF TF j   

Tcost = Tcost + wj  

If Tcost > wk 

( )S SS k ;  

Cost=Cost+wk – Tcost;  

      Output: S, Cost. 
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3.3  Complexity of the algorithm 

Theorem 1. The time complexity of the hybrid heuristic algorithm is O(MK
3
). 

      Proof. By simple calculation, we know that Step 1.1 runs KM times, and Step 1.2 and 

Step 1.3 in each iteration run (2M + 1)K times and 2M + K times, respectively. Note that the 

maximum number of iterations in Stage 1 is no more than K; then the total complexity in 

Stage 1 is no more than KM + ((2M + 1)K + (2M + K))K = O(MK
2
). By similar arguments, we 

know that the complexity of Stage 2 is O(MK
2
), and the complexity of Stage 3 is O(MK

3
). 

Therefore, the total time complexity of the hybrid heuristic algorithm is O(MK
3
). 

      Theorem 2 Let x
0
 be the solution obtained from Stage 1 of the hybrid heuristic algorithm 

and x
*
 be the optimal solution of problem (IP). We have 

0

1

max
*

1

( )

K

j j

j

K

j j

j

w x

q H g

w x





 




 

where  
1

max max
M

j ij
j j

i

g c u


 
   

 
 , 

1

1
( )

g

i

H g
i

  and 
max

1
max i

i M
q q

 
 . 

      Proof: Since pij = min {aij, qi}, the problem (IP) is equivalent to the following 0-1 linear 

programming model (IP-1): 

(IP-1) 

 

1

1

1 2

0 1 1 2

K

j j

j

K

ij j i

j

j

min z w x

p x q i , ...,M
s.t.

x , j , ,...,K








 


  



  

      Its relaxed linear programming model is as follows: 

(LP)  

1

1

1 2

0 1 2

K

j j

j

K

ij j i

j

j

min z w x

p x q i , ...,M
s.t.

x j , ,...,K








 


  



  

      The dual of (LP) is: 

(DP)   

1

1

1 2

0 1 2

M

i i

i

M

ij i j

i

i

max f q y

p y w j , ...,K
s.t.

y i , ,...,M








 


  



  

Assume that the solution x
0
 is found at iteration s of Stage 1. This means that there are s 

shelves selected corresponding to the solution x
0
. Let the index of the selected shelf in 

iteration r be denoted by (r). 

When all quantity of goods i in the batch of orders can be taken from the selected shelves, 

we say that goods i is completely picked. 

Assume that all items are completely picked according to the type of goods ordered  

1, 2, …, M, which means that goods 1, 2, …, i-1 are completely picked before the type of 

goods i is completely picked. Therefore, before the last item of goods i is picked, the number 
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of types of goods that are completely picked on shelf j is at most i-1. Then, the number of 

types of goods that can continue to be picked from shelf j is at least cj – i + 1. 

Let qi
r
 be the quantity of goods i that have not been picked before iteration r of Stage 1. 

Then P
r
j = (p

r
1j, p

r
2j, …, p

r
Mj)

T
 is the vector of goods' quantities that have not been picked 

from shelf j before iteration r of Stage 1, and 
1

M
r r

j ij

i

b p


  is the total quantity of all types of 

goods that have not been picked from shelf j before iteration r of Stage 1. 

If the last item of goods i is picked in iteration r, then the time for picking the last item of 

goods i is 
( )

( )

r

r

r

w

b
. Based on the rules for selecting shelves in Stage 1, we obtain:  

(1) (2) ( )

1 2

(1) (2) ( )

...
r

r

r

w w w

b b b
    and 

( )

( )

r j

r r

r j

w w

b b
 ,  j = 1, 2, …, K. 

Let 
( )

max ( )( )

r

i r

r

w
y

q H g b
 . We can prove that yi is a feasible solution of (DP). Since 

( )

max ( )( ) ( ) ( )( 1)

r j j

i r r

r i j i j

w w w
y

q H g b q H g b q H g c i
  

 
, 

then 

 

 

1 1 : 0

: 0

( )( 1) ( )( 1)

( )
( )( 1) ( )

ij

ij

M M
j j

ij i ij ij

i i i pi j i j

j j

j j

i p j

w w
p y p p

q H g c i q H g c i

w w
H c w

H g c i H g

  



 
   

  
 

  



 

and 

( ) ( )

( )

1 1 1 1max ( ) max ( ) max

1 1

( ) ( ) ( )

M M M s
r r

i i i i rr r
i i i rr r

w w
q y q q w

q H g b q H g b q H g   

      . 

From the dual theory, we have that  

1

M

i i LP

i

q y OPT


 . 

Note that 1LP IPOPT OPT  , 
0

( )

1 1

K s

j j r

j r

w x w
 

   and 
*

1

1

K

j j IP IP

j

w x OPT OPT



  , we have  

0

1

max
*

1

( )

K

j j

j

K

j j

j

w x

q H g

w x





 




. 

From Theorem 2, in the worst case, the ratio of the approximate solution obtained in Stage 

1 over the exact solution is less than qmax ln(g). Moreover, the quality of the approximate 

solution can be further improved in Stage 2 and Stage 3. 

4. A SIMPLE EXAMPLE 

Example: There are 12 types of goods stored on 8 movable shelves, and the quantity of each 

of the goods on each shelf is represented as matrix A. Each row of matrix A corresponds to 

one type of goods. Each column of matrix A corresponds to a shelf. 
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2 0 0 2 0 0 3 0

3 0 0 1 0 0 0 2

2 0 0 0 3 0 1 0

1 0 0 0 2 0 0 2

0 2 0 1 0 0 2 0

0 3 0 0 1 2 0 0

0 1 0 0 0 3 0 2

0 3 0 0 1 2 0 0

0 0 3 2 0 0 1 0

0 0 2 0 1 0 3 0

0 0 3 0 0 1 0 2

0 0 1 0 0 3 0 2

A

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

 

The round-trip moving times of the shelves are set as W = (2  4  3  1  3  2  3  2). The 

quantities of goods in the batch of orders is Q = (2  3  1  2  2  2  1  2  1  2  3  1)
T
. 

The hybrid heuristic algorithm runs as follows: 

Stage 1. Calculate the average moving time for picking one item from each shelf. The 

results are listed in Table I. 

Table I: Average moving time for picking one item from each shelf. 

Shelf 1 2 3 4 5 6 7 8 

Average time 2/7 4/7 3/7 1/5 3/6 2/7 3/8 2/8 

 

From Table I, we select Shelf 4 first and update Q and S as follows: 

Q = (0  2  1  2  1  2  1  2  0  2  3  1)
T
 and S = {4} 

Recalculate the average moving time for picking one item from the remaining shelves (see 

Table II), and then select Shelf 8. 

Table II: Average time for picking one item from the remaining shelves. 

Shelf 1 2 3 5 6 7 8 

Average time 2/4 4/6 3/6 3/6 2/7 3/4 2/8 

Repeat these steps until Q = (0  0  0  0  0  0  0  0  0  0  0  0)
T
. Then, we obtain a feasible 

solution S = {4, 6, 7, 8} with the total round-trip moving time as 8. It is easy to check that it is 

also the global optimal solution of problem (IP). 

5. EXTENSIVE NUMERICAL EXPERIMENTS 

5.1  Random testing problems 

In this section, we conduct extensive numerical experiments on testing problems generated 

randomly to validate the effectiveness and efficiency of the heuristic algorithm. Suppose that 

there are at most 10 types of goods placed on one shelf. For each type of goods, one shelf has 

at most 8 items. The moving time of each shelf is an integer between 1~10 generated 

randomly following uniform distribution.  

The quantity of each type of goods on a shelf is an integer generated randomly between 

1~8. The quantity of each type of goods in the order is an integer generated randomly from 

{0, 1, 2, 3}. For every group of parameters, we randomly generate 10 examples. We solve 
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each example using both Lingo software, which generates the exact solution, and the hybrid 

heuristic algorithm. For every testing example, we record the running times of both methods 

and the approximate ratio of the hybrid heuristic algorithm. The average running time and 

approximate ratio of the two methods are the average of 10 testing examples. The worst 

approximate ratio is the largest approximate ratio among 10 examples. The results are 

summarized in Table III. 

Table III: The numerical results. 

M K 

The average running 

time of the heuristic 

algorithm (seconds) 

The average running 

time of Lingo 

software (seconds) 

The average approx-

imate ratio of the 

heuristic algorithm 

The worst 

approximate 

ratio 

200 100 0.15 0.31 1.015 1.043 

200 150 0.20 0.6 1.05 1.080 

200 200 0.185 0.765 1.07 1.124 

200 250 0.19 0.76 1.05 1.092 

200 300 0.236 0.98 1.08 1.133 

400 200 0.55 1.06 1.012 1.019 

400 300 0.65 1.4 1.045 1.148 

400 400 0.798 2.7 1.044 1.077 

400 500 0.8 2.56 1.076 1.123 

400 600 0.99 7.5 1.08 1.136 

500 300 1.16 1.44 1.026 1.05 

500 400 1.44 2.04 1.048 1.067 

500 500 1.99 3.44 1.058 1.078 

500 600 1.61 4.7 1.062 1.083 

500 700 2.27 8.2 1.078 1.116 

500 800 1.75 7.1 1.073 1.093 

500 900 1.957 Run out of memory - - 

800 600 8.06 Run out of memory - - 

800 800 12.21 Run out of memory - - 

800 1000 13.75 Run out of memory - - 

1000 1000 21.72 Run out of memory - - 

1000 1500 34.62 Run out of memory - - 

1000 3000 191.98 Run out of memory - - 

      Table III shows that the average approximate ratio of the hybrid heuristic algorithm does 

not exceed 1.08 in all examples. The worst-case approximate ratio is no more than 1.15. This 

means that the hybrid heuristic algorithm is effective (i.e., the solution generated by the 

method is very close to the optimal solution). Furthermore, for all of the testing problems, the 

hybrid heuristic algorithm is faster than Lingo software (Lingo 11). Moreover, for medium- 

and large-scale problems, Lingo cannot obtain the optimal solution due to insufficient 

memory, while the hybrid heuristic algorithm can still solve the problem in a short amount of 

time. Therefore, the hybrid heuristic algorithm is efficient. 
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5.2  Comparing with the greedy algorithm for a set-covering problem 

Since the problem studied in this paper is an extension of the set-covering problem, to 

demonstrate the effectiveness of the algorithm proposed in this paper, we compare its 

performance with that of the greedy algorithm stated in [23] and [27] on a typical extreme 

example of the set-covering problem (many researchers use this example to estimate the 

performance of the greedy algorithm) [23]. 

K types of goods are stored in K+1 movable shelves. For the first K shelves, only one type 

is placed on each shelf. The last shelf stores all types of goods. The quantities of goods stored 

on shelves can be expressed in the following matrix: 

1

1 0 0 1

0 1 0 1

0 0 1 1
K ( K )

A

 

 
 
 
 
 
 

 

The round-trip moving time of shelves is set as W = (1, 1/2, 1/3, …, 1/K, 1+), where  is 

a small positive real number. The quantity of each type of goods in the order to be picked is 

exactly 1; Q = (1, 1, 1, …, 1)
T
. It is easy to check that the optimal solution is S = {K + 1}, and 

the optimal value is 1 + . 
When this example is solved by greedy algorithms, we obtain the approximate solution  

S = {1, 2, …, K} with the value of 
1

1
( )

K

i

H K
i

  [23, 27]. However, the hybrid heuristic 

algorithm can get the exact solution. 

We also note that if we only execute Stage 1 of the algorithm, we can also get the 

approximate solution S = {1, 2, …, K}. However, after we execute Stages 2 and 3, we can 

obtain the global optimal solution. Therefore, Stages 2 and 3 of the algorithm can effectively 

improve the solution precision and avoid falling into a local optimal solution. 

6. CONCLUSION 

The cargo-to-person picking mode is a new e-commerce warehouse-management mode. 

Amazon's successful application of the Kiva system illustrates the advantages of a system 

based on the new picking mode. To reduce picking time and improve picking efficiency, it is 

important to select optimal shelves for moving a given batch of orders. In this paper, we 

studied the optimal movable-shelf selection problem under the cargo-to-person picking mode. 

We modelled this problem using 0-1 linear programing and proved that the problem is NP-

hard. Then, a hybrid heuristic algorithm with polynomial complexity is proposed for the 

problem. We also conduct numerical experiments to show the effectiveness and efficiency of 

the proposed algorithm. Based on the results summarized in this paper, additional topics need 

to be further studied. 

In this paper, we only consider the problem of picking one batch of orders and assume 

that the position of each shelf in the warehouse is fixed. In reality, the orders to be picked are 

often partitioned into multiple batches. In the process of picking two successive batches of 

orders, some shelves might be moved twice. To reduce the total round-trip moving time of 

shelves, we should adjust the positions of shelves in the warehouse according to the 

information of all batches of orders. In other words, after a shelf is moved to the platform for 

picking one batch of orders, its position in the warehouse might be adjusted to reduce the 

round-trip moving time of shelves for picking the next batch of orders. In the future, we will 

study multi-stage optimal movable-shelf selection problems and the optimal strategy for 

adjusting shelves’ positions. 
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The optimal movable-shelf selection problem discussed in this paper occurs at the 

operational level, which is a static problem. In fact, different processes of cargo-to-person 

warehouse systems, such as location allocation, order-batching, shelf selection, robot task 

assignment and path routing, are correlated. Studying the optimal movable-shelf selection 

problem considering other processes is an interesting topic that needs to be studied further. 
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