Vol. 2
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-29
Wideband 180 Degree Phase Shifter Using Microstrip-CPW-Microstrip Transition
By
Progress In Electromagnetics Research B, Vol. 2, 177-187, 2008
Abstract
A microstrip 180o phase shifter obtained by a novel design of Microstrip-to-Coplanar Waveguide (CPW)-to-Microstrip transition is presented. The proposed phase shifter is obtained without changing the layer of the second microstrip line. Via holes are used to transfer the current from the top to the bottom substrate layer and vice versa. The presented phase shifter is operating in a wide bandwidth between 5.5 and 18 GHz, with low insertion loss and reflection coefficients. Because the input and output microstrip lines are on the same layer, the presented phase shifter is suitable for a modified class of feeding networks for phased antenna arrays.
Citation
Abdelnasser Eldek, "Wideband 180 Degree Phase Shifter Using Microstrip-CPW-Microstrip Transition," Progress In Electromagnetics Research B, Vol. 2, 177-187, 2008.
doi:10.2528/PIERB07111507
References

1. Maloratsky, L. G., "Reviewing the basics of microstrip lines," Microwave & RF, 79-88, March 2000.

2. Mailloux, R. J., Phased Array Handbook, Artech House, Boston, 1994.

3. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
doi:10.2528/PIER06012001

4. Eldek, A. A., "Ultra wideband double rhombus antenna with stable radiation patterns for phased array applications," IEEE Trans. Antennas Propagat., Vol. 55, No. 1, 84-91, Jan. 2007.
doi:10.1109/TAP.2006.886560

5. Kim, S., S. Jeong, Y. T. Lee, D. H. Kim, J. S. Lim, K. S. Se, and S. Nam, "Ultra-wideband (from DC to 110 GHz) CPW to CPS transition," Electronic Lett., Vol. 38, No. 13, 622-623, Jun. 2002.
doi:10.1049/el:20020423

6. Tilley, K., X. D. Wu, and K. Chang, "Wideband transition from conductor-backed coplanar waveguide to modified coplanar stripline using multiple substrates," Electronic Lett., Vol. 29, No. 23, 2051-2052, Nov. 1993.
doi:10.1049/el:19931370

7. Ho, C. H., L. Fan, and K. Chang, "Broad-band uniplanar hybridring and branch-line couplers," IEEE Trans. Microwave Theory and Techniques, Vol. 41, No. 12, 2116-2125, Dec. 1993.
doi:10.1109/22.260719

8. Prieto, D., J. C. Cayrou, J. L. Cazaux, T. Parra, and J. Graffeul, "CPS structure potentialities for MMICs: a CPS/CPW transition and a bias network," IEEE MTT-S International Microwave Symposium Digest 1998, Baltimore, MD, Vol. 1, 111-114, Jun. 1998.

9. Mao, S. G., C. T. Hwang, R. B. Wu, and C. H. Chen, "Analysis of coplanar waveguide-to-coplanar stripline transitions," IEEE Trans. Microwave Theory and Techniques, Vol. 48, No. 1, 23-29, Jan. 2000.
doi:10.1109/22.817468

10. Suh, Y.-H. and K. Chang, "A wideband coplanar stripline to microstrip transition," IEEE Microwave and Wireless Components Lett., Vol. 11, No. 1, 28-29, Jan. 2001.
doi:10.1109/7260.905958

11. Safwat, A. M. E., K. A. Zaki, W. Johnson, and C. H. Lee, "Novel transition between different configurations of planar transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 4, 128-131, Apr. 2002.
doi:10.1109/7260.993290

12. Zheng, G., J. Papapolymerou, and M. M. Tentzeris, "Wideband coplanar waveguide RF probe pad to microstrip transitions without via holes," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 12, 544-546, Dec. 2003.
doi:10.1109/LMWC.2003.820638

13. Maya, M. C., A. Lazaro, P. DePaco, and L. Pradell, "A method for characterizing coplanar waveguide-to-microstrip transitions, and its of microstrip devices with coplanar microprobes," Microwave Optical Tech. Lett., Vol. 39, No. 5, 373-378, Dec. 2003.
doi:10.1002/mop.11222

14. Reiche, E. and F. H. Uhlmann, "Application of the FDTD for the optimization of broad-band transitions between different types of transmission lines," IEEE Trans. on Magnetics, Vol. 38, No. 2, 593-596, Mar. 2002.
doi:10.1109/20.996155

15. Oldenburg, M. K. and T. M. Weller, "High-efficency CPW-to-slotline transitions on low εr substrates," Microwave Optical Tech. Lett., Vol. 41, No. 2, 91-93, Apr. 2004.
doi:10.1002/mop.20057

16. Abbosh, A. M. and M. E. Bialkowski, "An UWB planar out-of-phase power divider employing parallel stripline-microstrip transitions," Microwave Optical Tech. Lett., Vol. 49, No. 4, 912-914, Apr. 2007.
doi:10.1002/mop.22324

17. Mousavi, P., R. R. Mansour, and M. Daneshmand, "A novel wide band 180-degree phase shift transition on multilayer substrates," IEEE MTT-S International Microwave Symposium Digest 2004, 1887-1890, Jun. 2004.

18. HFSS: High Frequency Structure Simulator Based on the Finite Element Method,v er. 10,Ansoft Corp., 2005.