Quercetin effectively improves LPS-induced intestinal inflammation, pyroptosis, and disruption of the barrier function through the TLR4/NF-κB/NLRP3 signaling pathway in vivo and in vitro

  • Hui-Xin Zhang Department of Veterinary Clinic Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
  • Ye-Ye Li Department of Veterinary Clinic Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
  • Zhong-Jie Liu Department of Veterinary Clinic Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
  • Jiu-Feng Wang Department of Veterinary Clinic Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
Keywords: quercetin; LPS; pyroptosis; TLR4; NLRP3; GSDMD; interleukins; ZO-1; claudins; IBD

Abstract

Background: Inflammatory bowel diseases are characterized by the alterations of the mucosa and gastrointestinal physiology, and the core of these alterations is endothelial cells. Quercetin is a flavonoid presents in some traditional Chinese medicine, plants, and fruits. Its protective effects in several gastrointestinal tumors have been demonstrated, but its effects on bacterial enteritis and pyroptosis-related diseases have rarely been studied.

Objective: This study aimed to evaluate the effect of quercetin on bacterial enteritis and pyroptosis.

Design: In vitro experiments were performed using rat intestinal microvascular endothelial cells divided into seven groups: control group (no treatment), model group (10 μg/mL lipopolysaccharide (LPS)+1 mM adenosine triphosphate [ATP]), LPS group (10 μg/mL LPS), ATP group (1 mM ATP), and treatment groups (10 μg/mL LPS+1 mM ATP and 5, 10, and 20 μM quercetin). The expression of pyroptosis-associated proteins, inflammatory factors, tight junction proteins, and the percentage of late apoptotic and necrotic cells were measured. In vivo analysis was performed using specific pathogen-free Kunming mice pretreated with quercetin and the water extract of Cacumen Platycladi for 2 weeks followed by 6 mg/kg LPS on day 15. Inflammation in the blood and intestinal pathological changes were evaluated.

Results: Quercetin used in vitro significantly reduced the expression of Toll-like receptor 4 (TLR4), NOD-like receptor 3 (NLRP3), caspase-1, gasdermin D, interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor-α. It also inhibited phosphorylation of nuclear factor-kappa B (NF-κB) p65 and increased cell migration and the expression of zonula occludens 1 and claudins, while reduced the number of late apoptotic cells. The in vivo results showed that Cacumen Platycladi and quercetin significantly reduced inflammation, protected the structure of the colon and cecum, and prevent fecal occult blood induced by LPS.

Conclusions: These findings suggested the ability of quercetin to reduce inflammation induced by LPS and pyroptosis through TLR4/NF-κB/NLRP3 pathway.

Downloads

Download data is not yet available.

References


1.
Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393–402. doi: 10.1016/j.molcel.2008.04.009


2.
Tolstanova G, Deng X, French SW, Lungo W, Paunovic B, Khomenko T, et al. Early endothelial damage and increased colonic vascular permeability in the development of experimental ulcerative colitis in rats and mice. Lab Invest 2012; 92: 9–21. doi: 10.1038/labinvest.2011.122


3.
Saijo H, Tatsumi N, Arihiro S, Kato T, Okabe M, Tajiri H, et al. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis. Lab Invest 2015; 95: 728–48. doi: 10.1038/labinvest.2015.60


4.
Meera CH, Munashe C. Diagnosis and treatment of infectious enteritis in neonatal and juvenile ruminants. Vet Clin North Am Food Anim Pract 2018; 34: 101–17. doi: 10.1016/j.cvfa.2017.08.001


5.
Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Sabatino AD, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015; 350: 830–4. doi: 10.1126/science.aad0135


6.
Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 2015; 265 (1): 130–42. doi: 10.1111/imr.12287


7.
Nirmala J.C, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2020; 36(2): 145–64. doi: 10.1007/s10565-019-09496-2


8.
Chen XL, Liu GL, Yuan YY, Wu GT, Wang SL, Yuan LW. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis 2019; 10: 906. doi: 10.1038/s41419-019-2157-1


9.
Liu BH, Hou L, Luo WJ, Wang CC, Wen YJ, Liu YL, et al. LPS and ATP co-induce the activation of NLRP3 inflammasome in macrophages. J BJ Univ Agric 2018; 33: 74–8. doi: 0.13473/j.cnki.issn.1002-3186.2018.0119


10.
He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016; 41: 1012–21. doi: 10.1016/j.tibs.2016.09.002


11.
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 2019; 19: 477–89. doi: 10.1038/s41577-019-0165-0


12.
He CL, Zhao Y, Jiang XL, Liang XX, Yin LZ, Yin ZQ, et al. Protective effect of Ketone musk on LPS/ATP-induced pyroptosis in J774A.1 cells through suppressing NLRP3/GSDMD pathway. Int Immunopharmacol 2019; 71: 328–35. doi: 10.1016/j.intimp.2019.03.054


13.
Mezzasoma L, Antognelli C, Talesa VN. Atrial natriuretic peptide down-regulates LPS/ATP-mediated IL-1 beta release by inhibiting NF-kB, NLRP3 inflammasome and caspase-1 activation in THP-1 cells. Immunol Res 2016; 64: 303–12. doi: 10.1007/s12026-015-8751-0


14.
Groß CJ, Mishra R, Schneider KS, Medard G, Wettmarshausen J, Dittlein DC, et al. K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 2016; 45: 761–73. doi: 10.1016/j.immuni.2016.08.010


15.
Zhang J, Wu GH, Shan AS, Han Y, Jin YC, Fang HT, et al. Dietary glutamine supplementation enhances expression of ZO-1 and occludin and promotes intestinal development in Min piglets. Acta Agric Scand A Anim Sci 2017; 67: 15–21. doi: 10.1080/09064702.2017.1333133


16.
Xu J, Liu ZH, Zhan W, Jiang R, Yang CH, Zhan H, et al. Recombinant TsP53 modulates intestinal epithelial barrier integrity via upregulation of ZO-1 in LPS-induced septic mice. Mol Med Rep 2018; 17: 1212–8. doi: 10.3892/mmr.2017.7946


17.
Tian SY, Guo RX, Wei SC, Kong Y, Wei XL, Wang WW, et al. Curcumin protects against the intestinal ischemia-reperfusion injury: involvement of the tight junction protein ZO-1 and TNF-α related mechanism. Korean J Physiol Pharmacol 2016; 20(2): 147–52. doi: 10.4196/kjpp.2016.20.2.147


18.
Hu RZ, He ZY, Liu M, Tan JJ, Zhang HF, Hou DX, et al. Dietary protocatechuic acid ameliorates inflammation and upregulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. J Anim Husbandry Biotechnol 2021; 12: 328–39. doi: 10.1186/s40104-020-00492-9


19.
Escudero-Esparza A, Jiang WG, Martin TA. The Claudin family and its role in cancer and metastasis. Front Biosci 2011; 16: 1069–83. doi: 10.2741/3736


20.
Ya ZC, Ozcan CU, Hismioguliari AA, Sunay FB, Ozcan T, Berksoy EA, et al. Protective effects of quercetin on necrotizing enterocolitis in a neonatal rat model. Am J Perinatol 2018; 35: 434–40. doi: 10.1055/s-0037-1608660


21.
Chen WS, Zhou LL, Qiao Y. Quality evaluation of ilex asprella based on simultaneous determination of five bioactive components, chlorogenic acid, luteoloside, quercitrin, quercetin, and kaempferol, using UPLC-Q-TOF MS study. J AOAC Int 2019; 102: 1414–22. doi: 10.5740/jaoacint.18-0391


22.
Truong, VL, Ko SY, Jun M, Jeong WS. Quercitrin from toona sinensis (Juss.) M.Roem. attenuates acetaminophen-induced acute liver toxicity in HepG2 cells and mice through induction of antioxidant machinery and inhibition of inflammation. Nutrients 2016; 8: 431. doi: 10.3390/nu8070431


23.
Zhi KK, Li MQ, Bai J, Wu YF, Zhou SL, Zhang XP, et al. Quercitrin treatment protects endothelial progenitor cells from oxidative damage via inducing autophagy through extracellular signal-regulated kinase. Angiogenesis 2016; 19: 311–24. doi: 10.1007/s10456-016-9504-y


24.
Zhou XH, Xu FL, Chen J. Effect of gemcitabine combined with Quercetin on apoptosis of pancreatic cancer cell Panc-1. Med Health Technol 2013; 35: 542–6.


25.
Suzuki T, Hara H. Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem 2011; 22: 401–8. doi: 10.1016/j.jnutbio.2010.08.001


26.
Tamura M, Matsuo Y, Nakagawa H, Hoshi C, Hori S. Isolation of a quercetin-metabolizing bacterium 19- 20 from human feces. Food Sci Technol Res 2017; 23: 145–50. doi: 10.3136/fstr.23.145


27.
Li R, Lin C, Yao GM, Yan HL, Wang L. Effects of Quercetin on diabetic retinopathy and its association with NLRP3 inflammasome and autophagy. Int J Ophthalmol 2021; 14: 42–9. doi: 10.18240/ijo.2021.01.06


28.
Su KY, Yu CY, Chen YP, Hua KF, Chen YLS. 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. BMC Complement Med Ther 2014; 14: 21. doi: 10.1186/1472-6882-14-21


29.
Liu P, Bian YF, Zhong J, Yang Y, Mu X, Liu ZJ. Establishment and characterization of a rat intestinal microvascular endothelial cell line. Tissue Cell 2021; 72: 101573. doi: 10.1016/j.tice.2021.101573


30.
Coll RC, Robertson A, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015; 21: 248–55. doi: 10.1038/nm.3806


31.
Zhang X, Ke X, Chen JT, Gao YL, Zhou F. Dynamic expression and significance of IL-1β and IL-4 in ulcerative colitis rats with dampness and heat syndrome. J xi’an jiaotong Univ (med Sci) 2015; 36(5): 697–701. doi: 10.7652/jdxb201505024


32.
Kong Q, Li Z, Zhao B, Duan WN, Qiu Z, Huang Q, et al. The role of TIPE2 in pyrophosis of mouse macrophages: evaluation by siRNA technique. Chin J Anesthesiol 2019; 39: 482–5. doi: 10.3760/cma.j.issn.0254-1416.2019.04.026


33.
Shi DH, Dai YP, Wang LF, Zhou Q, Zhang XL, Zhang J. Analysis of chemical constituents of Platycladus orientalis leaves before and after charcoal frying based on UHPLC-QTOF-MS/MS identification. Chin J Exp Formulae 2021; 27: 107–16. doi: 10.13422/j.cnki.syfjx.20202354


34.
Lei M, Dai JK, Cao D, Liu X, Wang LQ, Zhao QQ, et al. Research progress on chemical constituents and pharmacological effects of platycladus orientalis leaves and seeds. Chem Life 2018; 38: 281–9. doi: 10.13488/j.smhx.20180216


35.
Zhao L, Li MY, Sun KC, Su S, Geng TT, Sun H. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-kappa B signaling pathway. Int J Biol Macromol 2020; 155: 1202–15. doi: 10.1016/j.ijbiomac.2019.11.088


36.
Zhang RY, Dong LN, Li FX, Liu P, Wang JP. Correlation between fecal and intestinal mucosal flora and tight junction protein ZO-1 in patients with functional gastrointestinal disease. Chin Med 2017; 12: 1193–6. doi: 10.3760/cma.j.issn.16734777.2017.08.019


37.
Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, et al. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol 2015; 208: 821–38. doi: 10.1083/jcb.201404140


38.
Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. HHS Public Access 2017; 1397(1): 66–7. doi: 10.1111/nyas.13360


39.
Barrett KE. Claudin-2 pore causes leak that breaches the dam in intestinal inflammation. J Clin Invest 2020; 130(10): 5100–1. doi: 10.1172/JCI140528


40.
Bu N, Wang Y, Wang R, Sun LT, Fan YQ. Experimental study of tripterygium polyglycosides through JAK2/STAT3 signaling pathway to reduce intestinal mucosal cell apoptosis and inflammation in rats with ulcerative colitis. Mod Digest Interv Diagn Treat 2019; 24: 466–70. doi: 10.3969/j.issn.1672-2159.2019.05.004


41.
Lin CF, Kuo YT, Chen TY, Chien CT. Quercetin-rich guava (psidium guajava) juice in combination with trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules 2016; 21: 334. doi: 10.3390/molecules21030334


42.
Han XJ, Xu TS, Fang QJ, Zhang HJ, Yue LJ, Hu G, et al. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 2021; 44: 102010. doi: 10.1016/j.redox.2021.102010


43.
Luo X, Bao XY, Weng XZ, Bai XX, Feng Y, Huang JX, et al. The protective effect of Quercetin on macrophage pyroptosis via TLR2/Myd88/NF-kappaB and ROS/AMPK pathway. Life Sci 2021; 291: 120064. doi: 10.1016/j.lfs.2021.120064


44.
Huan F, Cheng J, Jin SX, Xu JH, Wang J, Xiao H. Study on the genotoxicity of Quercetin in mammalian cells in vitro. Chin J Prev Med 2010; 11: 797–800. doi: 10.16506/j.1009-6639.2010.08.011


45.
Qiao Y. TLR-induced NF-KB activation regulates NLRP3 expression in murine macrophages. FEBS Lett 2012; 586(7): 1022–6. doi: 10.1016/j.febslet.2012.02.045


46.
Cheon PJ, Nam JC, Nan HH, Choo L, Kil B. The functional effects on anti-oxidant and anti-inflammation of veronica persica Poir. Extracts. Korea J Org Agric 2018; 26: 661–76. doi: 10.11625/KJOA.2018.26.4.661


47.
Li HX, Zhou LL, Zhi ZK, Lv XR, Wei ZH, Zhang X, et al. Lipopolysaccharide upregulates miR-132/212 in Hirschsprung-associated enterocolitis, facilitating pyroptosis by activating NLRP3 inflammasome via targeting Sirtuin 1 (SIRT1). AGING-US 2020; 12: 18588–602. doi: 10.18632/aging.103852


48.
Liu ZX, Chen YZ, Xu JM, An N, Zhang J, Gu SL, et al. Heme-activated pyrin domain-containing NOD-like receptor family protein 3 (NLRP3) inflammasome induces renal tubular epithelial cell pyrolysis. J Cell Mol Immunol 2020; 36: 809–14. doi: 10.13423/j.cnki.cjcmi.009067


49.
Dong WJ, Zhu QS, Yang BW, Qin Q, Wang YW, Xia XM, et al. Polychlorinated biphenyl quinone induces caspase 1-mediated pyroptosis through induction of pro-inflammatory HMGB1-TLR4-NLRP3-GSDMD signal axis. Chem Res Toxicol 2019; 32: 1051–7. doi: 10.1021/acs.chemrestox.8b00376


50.
Jiang WD, Wen HL, Liu Y, Jiang J, Kuang SY, Wu P, et al. The tight junction protein transcript abundance changes and oxidative damage by tryptophan deficiency or excess are related to the modulation of the signalling molecules, NF-kappa B p65, TOR, caspase-(3,8,9) and Nrf2 mRNA levels, in the gill of young grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol 2015; 46: 168–80. doi: 10.1016/j.fsi.2015.06.002


51.
Feng L, Gan L, Jiang WD, Wu P, Liu Y, Jiang J, et al. Gill structural integrity changes in fish deficient or excessive in dietary isoleucine: towards the modulation of tight junction protein, inflammation, apoptosis and antioxidant defense via NF-kappa B, TOR and Nrf2 signaling pathways. Fish Shellfish Immunol 2017; 63: 127–38. doi: 10.1016/j.fsi.2017.02.010


52.
Park SY, Jang H, Kim SY, Kim D, Park Y, Kee SH. Expression of E-cadherin in epithelial cancer cells increases cell motility and directionality through the localization of ZO-1 during collective cell migration. Bioengineering 2020; 8: 65. doi: 10.3390/bioengineering8050065


53.
Bai YL, Zhu XD, Lan YZ, Xu KY, Song N, Fan LH. Clinical application and dosage of Arborvitae orientalis. J CH Univ Tradit Chin Med 2020; 36(06): 1123–6. doi: 10.13463/j.cnki.cczyy.2020.06.009


54.
Yang HF, Li YJ, Lu GF, Jiang CM. Clinical expansion trial of rhubarb orientalis leaf mixture. Jiangsu Agric Sci 2012; 40(12): 235–6. doi: 10.15889/j.issn.1002-1302.2012.12.163


55.
Kawabata K, Kato Y, Sakano T, Baba N, Hagiwara K, Tamura A, et al. Effects of phytochemicals on in vitro anti-inflammatory activity of Bifidobacterium adolescentis. Biosci Biotechnol Biochem 2015; 79: 799–807. doi: 10.1080/09168451.2015.1006566
Published
2022-12-30
How to Cite
Zhang H.-X., Li Y.-Y., Liu Z.-J., & Wang J.-F. (2022). Quercetin effectively improves LPS-induced intestinal inflammation, pyroptosis, and disruption of the barrier function through the TLR4/NF-κB/NLRP3 signaling pathway<em> in vivo</em> and <em>in vitro</em&gt;. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8948
Section
Original Articles