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 
ABSTRACT 
 
The assessment of flood vulnerability involves 
multidimensional and complex interactions between 
environment, social and economic dimensions. 
Indicator-based vulnerability assessment such as the Flood 
Vulnerability Index (FVI) is widely used in vulnerability 
studies to summarise complexity and multidimensionality 
issues to gauge the level of vulnerability. To assess the 
various factors of vulnerability, we employed a set of 21 
environmental, social and economic indicators to 
quantitatively assess the three factors of vulnerability, namely 
exposure, susceptibility and resilience to flood at the 
subnational level. The construction of the vulnerability index 
involves sequential steps, including selecting the indicators, 
their normalisation, weightage and aggregation to a final 
index. In this study, we looked into which weighting and 
aggregation technique as the most suitable to develop the final 
composite indicator. The weighting techniques employed are 
equal weight, unequal weight and principal component 
analysis. Two different aggregation techniques, namely 
additive mean and geometric mean were used to aggregate the 
indicators to a single index. This study employed reliability 
and sensitivity analyses to evaluate the robustness of the FVI 
constructed using various techniques. This study shows the 
wider application of the equal weighting and additive mean 
techniques to develop composite indicator for flood 
vulnerability assessment. 
 
Key words : Equal weight, flood vulnerability index, 
principal component analysis, unequal weight.  
 
1. INTRODUCTION 
 
Composite indicators are widely used to encapsulate a range 
of complex and multidimensional issues [1]. Birkmann [2] 
reviewed in his paper a few approaches to measure risk and 
vulnerability using indicators, namely the Disaster Risk Index 
(DRI), the Hotspots Project, the Americas Indexing 
Programme and the Community-Based Risk Index which 
aimed to quantitatively and qualitatively measure risk and 
vulnerability. Vulnerability indicators method is commonly 
used in flood vulnerability studies [3]–[5] and are preferred by 
 

 

policy makers due to its ability to provide a simple model of 
the complex measurement of vulnerability. This method uses 
available data to provide an operational representation of the 
characteristic of a place and information of an element at risk 
[6]. The depiction of vulnerability over space provides policy 
makers the means to prioritise strategy and measures to 
manage disaster risk in specified region [7]. 
 
As vulnerability covers a multidimensional characteristic of 
risk such as environment, social and economic, the composite 
indicators method is able to provide an assessment of flood 
vulnerability in particular geographical region. With respect 
to the main issues and problems pertaining to the construction 
of a composite index, [8]–[10] recognised that important 
considerations should be given to proper conceptual 
framework and methodology. A framework defines the 
phenomenon to be measured and guides the selection of 
indicators [10]. An indicator or a set of indicators is 
characterised by its inherent characteristic to estimate 
quantitatively the condition of a system. Specific vulnerability 
indicators for flood have been developed to measure the 
factors contributing to vulnerability, namely exposure, 
susceptibly and resilience [3], [11], [12]. 
 
In the case of flood, vulnerability can be defined as “the extent 
which a system is susceptible to flood due to its exposure to a 
disturbance and its capacity or incapacity to be resilient, to 
cope, recover or adapt” [3]. Figure 1 shows the framework of 
flood vulnerability as a function of exposure, susceptibility 
and resilience. 
 

 
Figure 1: Vulnerability as a function of exposure, susceptibility and 

resilience [3] 
 
The formulation of the flood vulnerability index (FVI) 
equation can be expressed as in (1), where E is exposure, S is 
susceptibility, and R is resilience. These are known as factors 
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influencing vulnerability. Resilience is expressed as a 
negative connotation, in which a higher score causes the 
vulnerability to be higher. 
 
ܫܸܨ = ܧ + ܵ − ܴ (1) 
 
In brief, exposure is the geographical predispositions of a 
system to be disrupted by a flooding event [3]. Susceptibility 
refers to the extent to which elements within the system are 
exposed that influences the odds of being damaged at times of 
hazardous floods [3]. Resilience is the capability of a system 
to endure any disturbance while maintaining fundamental 
efficiencies in its social, economic, and physical 
environmental dimensions [3].  
 
This paper aims to show the differences between weighting 
and aggregation techniques and their influences on the 
resulting rankings by applying a methodological process of 
constructing indicators for flood vulnerability assessment. 
Malaysia is a country in south-east Asia, with a total surface 
are of 330,345 km2 and population of 31.6 million [13]. In a 
2003 national study, approximately 29,800 km2 (9%) of the 
landmass of the country is prone to flood with an estimated 
4.8 million (21%) population affected by flood [14]. Figure 2 
illustrates the flood prone areas in Malaysia.  
 

 
Figure 2: Flood prone areas in Malaysia [14] 

 
2. METHODOLOGY 
 
For this paper, three weighting techniques and two 
aggregation techniques were examined to study their effect 
and to determine the preferred method to construct composite 
indicators for flood vulnerability assessment in Malaysia. The 
FVI for the 14 states of Malaysia was computed using equal 
weight and aggregation method [15]. A set of 21 
environmental, social and economic indicators was selected to 
quantitatively assess the three factors of flood vulnerability, 
namely exposure, susceptibility and resilience at the 
subnational level. As shown in Figure 3, the indicators were 
grouped to make 3 composite indicators and finally combined 
as a single index. The null hypothesis is there is no significant 
agreement among the rankings of the states based on the FVI. 

 
Figure 3: Indicators and their respective vulnerability factors 

 
2.1 Overview of Indicators 
 
Table 1 contains the indicators in different measurement units 
under the three factors of flood vulnerability. Consideration of 
vulnerability indicators undertaken in this study is based on 
literature review while the selection of indicators depends on 
its relevancy and the availability of secondary data. More 
importantly, these indicators can describe the relationship 
between the three factors of vulnerability. 
 

Table 1: Selected indicators for flood vulnerability 

Factor Indicators Functional 
Relationship 

Ex
po

su
re

 

Flood prone area (%) (+) 
Population in flood prone area 
(%) 

(+) 

Population density in flood 
prone area (persons/km2) 

(+) 

Average annual damage (RM) (+) 
Average maximum daily 
rainfall (mm) 

(+) 

Frequency of flood (+) 
Flood water depth (m) (+) 

Su
sc

ep
tib

ili
ty

 

Children under 15 (%) (+) 
Elderly above 65 (%) (+) 
Disabled persons (%) (+) 
Inequality (Gini coefficient) (+) 
Houses with poor building 
material (%) 

(+) 

Agricultural workers (%) (+) 
Illiterate population (%) (+) 

R
es

ili
en

ce
 

Household median income 
(RM) 

(–) 

GDP per capita (RM) (–) 
Emergency services (hospital 
bed per 10,000 persons) 

(–) 

Volunteers (per 10,000 
persons) 

(–) 

Evacuation shelters (capacity 
per 10,000 person) 

(–) 

Potable water supply (%) (–) 
Internet access (%) (–) 

Flood Vulnerability 
Index

Exposure
Index

Susceptibility
Index

Resilience
Index

Flood prone area 
Population in flood prone area

Population density in flood prone area 
Average annual damage 

Average maximum daily rainfall 
Frequency of flood 
Flood water depth 

Children below 15 
Elderly above 65 
Disabled person 

Inequality 
Houses with poor building material 

Agricultural workers 
Illiterate population 

Household median income 
GDP per capita 

Emergency services 
Volunteers 

Evacuation shelters 
Potable water supply 

Internet access 
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2.2 Normalisation 
 
Since the indicators is measured in various units, they needed 
to be normalised to ensure comparability. The min-max 
normalisation is a process used to normalise the actual value 
into 0 to 1 scale. This normalisation technique has been used 
irrespective of study domain [16]–[19]. Before the values 
could be normalised, it was necessary to assign functional 
relationship to the indicators. There are two types of 
functional relationship; either vulnerability increases with an 
increase of the value of the indicator or a decrease of the value 
of the indicator. The functional relationships of the indicators 
were determined from previous studies. The lists of selected 
indicators and their functional relationship identified with 
flood vulnerability are shown in Table 1. 
 
In the case where vulnerability increases corresponding to the 
value of the indicator (the indicator has “+” functional 
relationship), normalisation was done using (2), as in 
 
௜௝ݕ =

௫೔ೕି௫೘೔೙ 	

௫೘ೌೣି௫೘೔೙
 (2) 

 
where yij denotes the normalised value of indicator (j) with 
respect to state (i), xij, xmin and xmax are the actual, minimum 
and maximum values, respectively, of indicator (j) among all 
the states (i). 
 
On the contrary, where vulnerability decreases with an 
increase in the value of the indicator (the indicator has “−” 
functional relationship), normalisation was carried out using 
(3), as in 
 
௜௝ݕ =

௫೘ೌೣି௫೔ೕ	

௫೘ೌೣି௫೘೔೙
 (3) 

 
2.3 Weighting 
 
The weights are required in composite indicator construction. 
Weights obtained from mathematical algorithms or models 
are known as objective weighting method as it does not 
involve subjective judgement from decision makers [20]. As 
there is no consensus on the method used in deriving weights 
[8], this study used equal weighting method as the baseline 
approach. In addition to that, weights derived from an inverse 
variance method proposed by [21] and principal component 
analysis (PCA) were also employed to investigate the 
implication of the use of weighting system. 

A. Equal Weight 
Most composite indicators depend on on equal weighting 
(EW) to assign the same weight to the indicators [8]. This 
method of averaging ensures an equal importance to all the 
indicators which may not be quite correct but may be 
acceptable when no other available means of weighting are 
known [22]. The various justification to use equal weighting 
includes simplicity of construction and lack of theoretical 
structure to justify a differential weighting scheme [23]. 

Similarly, [18], [19], [24] have employed equal weighting in 
their approach to construct vulnerability index. 
 
In this study, considering the straightforwardness and 
simplicity of equal weighting over other methods, the weights 
of the indicators are assumed equal. Using equal weighting 
(EW) method, the same weightage is assigned for each 
indicator using (4), as in 
 
௝ݓ = 1 ݇⁄  (4) 
 
where wj is a weight for k indicators (j = 1, …, k) for each 
factor. 

B. Unequal Weight 
Iyengar and Sudarshan [21] developed a statistically sound 
and well-suited method to create a composite indicator from 
multivariate data in order to rank the economic performance 
of the districts in India. This method has been used by [4], 
[25], [26]. Let yij, represent the normalised value of the jth 
indicator and the ith state (i = 1, 2, …, m; j = 1, 2, …, k), the 
indicator Ii according to their respective factors, are then 
summed using (5), as in 
 
௜ܫ = ;ܫܧ) (ܫܴ;ܫܵ = ∑ ௜௝௞ݕ௝ݓ

௝ୀଵ  (5) 
 
where the w’s (0 < wj < 1 and w1 + w2 + … + wj = 1) are the 
weights.  Ii denotes exposure index (EI), susceptibility index 
(SI) and resilience index (RI) for each ith state respectively. 
The weights are assumed to vary inversely as the variance 
over the states in the respective indicators and the weight wj is 
determined by (6) while the normalising constant, c, is 
determined by (7). 
 
௝ݓ = ܿ ඥݎܽݒ(ݕ௜௝)⁄  (6) 
 
ܿ = ห∑ 1 ඥݎܽݒ(ݕ௜௝)⁄௞

௝ୀଵ ห
ିଵ

 (7) 
 
This weighting method prevents peculiarly large variation in 
any of the indicators from overshadowing the contribution of 
the rest of the indicators, and that improvements in an 
indicator can compensate the deficiencies of the other 
indicators [21], [25]. 

C. Principal Component Analysis 
Principal component analysis (PCA) is a statistical approach 
to capture the highest variance possible in the original 
indicators by retaining as few components as possible. It has 
been used by the majority of the more recent vulnerability 
indices studies in vulnerability studies [19], [27]–[31]. This 
method has seemingly gained interest as a ‘data-driven 
technique’ to derive weight [23]. 
 
In this study, we used the Kaiser criterion to select the 
principal component with eigenvalues more than one which 
accounts for the maximum variance [8]. Kaiser [32] retained 
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the factors with eigenvalue greater than one as there are as 
many reliable factors which implies reliability. For the qth 
factor with eigenvalue greater than 1, the weight of each 
indicator is computed by dividing the explained variance with 
the total variance given by (8). Varimax rotation was then 
performed to maximise the sum of variances of the squared 
loadings. 
 
௝ݓ = ∑ ௝ܽ௤

ଶ௣
௤ୀଵ ∑ ௤ߣ

௣
௤ୀଵൗ  (8) 

 
where, wj is the weight of the jth indicator, λq is the eigenvalue 
of the qth factor and ajq is the loading value of the jth indicator 
on qth factor. 
 
2.4 Aggregation 
 
Aggregation based on addition of components using equal 
weights is used comprehensively [33]. As in previous studies, 
[27], [34], defended that the additive mean method model is 
more appropriate compared to geometric mean method, as the 
former do not make a priori assumption which allows for the 
weights of each factor to vary with different importance. 
Thereby, each factor is viewed as contributing equally to the 
state’s overall vulnerability. This is the best method in the 
absence of a defensible method for assigning weights to each 
factor. 
 
The geometric mean method, on the other hand, is used to 
address the shortcoming of additive aggregation in which a 
high value in one indicator can compensate a low value in 
another. This behaviour is known as compensability [33]. 
Geometric aggregation technique is a nonlinear approach and 
is calculated as the product of weighted indicators. Hence, the 
conceptual FVI equation can then be written as the additive 
mean in (9) and the geometric mean in (10) respectively. 
 
௔ܫܸܨ = ∑ ௝ܫ௝ݓ = ଵ

ଷ
ܫܧ) + ܫܵ + ௡(ܫܴ

௝ୀଵ  (9) 
 
௚ܫܸܨ = ∏ ௝௪ೕܫ = ܫܧ) × ܫܵ × (ܫܴ

భ
య௡

௝ୀଵ  (10) 
 
where FVIa and FVIg are the flood vulnerability index derived 
using additive and geometric means respectively, wj is the 
weight of the factor indicator Ij, and n is the number of factor 
indicators. Ij denotes EI, SI and RI for the exposure index, 
susceptibility index and resilience index respectively. Both 
additive and geometric approaches yield quantitative index 
score. 
 
2.5 Sensitivity and Reliability Analysis 
 
The null hypothesis is there is no significant agreement 
among the ranking of the states based on the FVI scores.  

A. Average Rank Shift 
Average shift in rank is a sensitivity analysis technique used 
to assess the robustness of the composite indicator [16], [22], 

[27]. The stability of the FVI and the resulting rank of a given 
state, Rank(FVIi), indicates the robustness of the estimation.  
The rank shift, Rs, measures the uncertainty of each input 
factor and the mean value is computed as the differences 
between the respective state’s ranking and the reference 
ranking over the total number of states (m) in (11), as in 
 
തܴ௦ = ଵ

௠
∑ หܴܽ݊݇௥௘௙(ܫܸܨ௜)−ܴܽ݊݇(ܫܸܨ௜)ห௠
௜ୀଵ  (11) 

 
where the reference ranking is perceived as the median rank. 

B. Spearman’s Rank-Order Correlation 
This study used the Spearman’s rank-order correlation, a 
non-parametric statistic test, to test the reliability of the 
rankings. Spearman’s has a value from -1 to +1, where +1 
signifies the ranks are perfectly positive correlated and -1 
signifies a perfect negative relationship between ranks while 0 
indicates no correlation between ranks. Taking into 
consideration of tied ranks, the Spearman’s rank-order 
correlation coefficient, , is given as (12) [35], as in 
 

 = ଵଶൣ∑ ோ೔ௌ೔ି௡(௡ାଵ)మ/ସ೙
೔సభ ൧

{[௡(௡మିଵ)ିଵଶ௧ᇱ][௡(௡మିଵ)ିଵଶ௨ᇱ]}భ మ⁄  (12) 
 
where Ri = rank(Xi), Si = rank(Yi) and the expression u' denotes 
the summation over all set of u tied in the additive mean 
method while t' the corresponding sum for the geometric 
mean method for n sample pairs. The formula is given in (13) 
and (14) respectively, as in 
 
ᇱݐ = ∑ ଶݐ)ݐ − 1) (13) 
 
ᇱݑ = ଶݑ)ݑ∑ − 1) (14) 

C. Cronbach’s Alpha 
We used the Cronbach’s alpha, , developed by Cronbach 
[36] to measure the reliability or consistency of the rankings. 
The Cronbach’s alpha is a function of the number of ranking 
methods and the average inter-correlation among the ranking 
methods. An alpha value greater than 0.9 means the rankings 
has excellent consistency while a value below 0.7 is 
questionable. The Cronbach’s alpha equation is given in (15). 
 
ߙ = ௡×௖̅

௩തା(௡ିଵ)௖
 ̅ (15) 

 
where n is the number of ranking methods, ܿ̅ is the average 
covariance between item-pairs and ̅ݒ is the average variance. 
 
3.  RESULTS AND DISCUSSION 
 
3.1 Derived Weights of the Indicators 
 
The derived weights of the indicators using various weighting 
techniques are plotted in a spider diagram as shown in Figure 
4. Using equal weight method as a baseline, each indicator is 
assigned a weightage of 1/7. The weights derived from 
unequal weight (Iyengar and Sudarshan) method and principal 
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component analysis do not follow any pattern. Table 2 shows 
the derived weights of the normalised indicators using equal 
weight (EW), unequal weight (UW) and principal component 
analysis (PCA). 
 

 
Figure 4: Spider diagram of the derived weights 

 
Table 2: Weights obtained from different weighting methods 

Indicators Weight 
EW UW PCA 

Flood prone area (E1) 0.143 0.124 0.145 
Population in flood prone area (E2) 0.143 0.124 0.168 
Population density in flood prone 
area (E3) 0.143 0.165 0.146 

Average annual damage (E4) 0.143 0.133 0.127 
Average maximum daily rainfall 
(E5) 0.143 0.131 0.147 

Frequency of flood (E6) 0.143 0.163 0.138 
Flood water depth (E7) 0.143 0.160 0.128 
Children below 15 (S1) 0.143 0.144 0.152 
Elderly above 65 (S2) 0.143 0.164 0.142 
Disabled person (S3) 0.143 0.152 0.144 
Inequality (S4) 0.143 0.121 0.114 
Houses with poor building material 
(S5) 0.143 0.120 0.155 

Agricultural workers (S6) 0.143 0.151 0.139 
Illiterate population (S7) 0.143 0.148 0.154 
Household median income (R1) 0.143 0.152 0.151 
GDP per capita (R2) 0.143 0.164 0.150 
Emergency services (R3) 0.143 0.163 0.149 
Volunteers (R4) 0.143 0.138 0.148 
Evacuation shelters (R5) 0.143 0.120 0.145 
Potable water supply (R6) 0.143 0.138 0.106 
Internet access (R7) 0.143 0.125 0.151 
 
The reliability of each indicator due to the effect of weights 
was tested using the Cronbach’s alpha and average rank shift 
method. We investigated the reliability of the exposure index, 
susceptibility index and resilience index. 
 
3.2 Reliability of Exposure Index 
 
Table 3 presents the outcome of the exposure index computed 
using three different weighting methods, namely equal 
weighting (EW), unequal weighting (UW) and principal 

component analysis (PCA). All three weighting methods 
consistently ranked the exposure for Kelantan (1st), Pahang 
(2nd), Terengganu (3rd), Selangor (4th), Kuala Lumpur (8th), 
Johor (9th), Perak (10th) Kedah (11th) and Melaka (12th). It is 
observed that the rank varies within 1 position for the state of 
Sarawak (5th - 6th) and Perlis, and varies within 2 positions for 
the state of Pulau Pinang (5th – 7th), Sabah (5th – 7th) and 
Negeri Sembilan (12th – 14th).  
 

Table 3: Exposure index (EI) and ranks using various weighting 
methods 

State EI Score EI Rank 
EW UW PCA EW UW PCA 

Johor 0.21 0.19 0.21 9 9 9 
Kedah 0.13 0.14 0.13 11 11 11 
Kelantan  0.60 0.58 0.61 1 1 1 
Melaka 0.05 0.05 0.05 12 12 12 
N. Sembilan 0.04 0.05 0.04 13 12 14 
Pahang 0.51 0.47 0.53 2 2 2 
Perak 0.18 0.19 0.18 10 10 10 
Perlis 0.04 0.04 0.04 13 14 13 
Pulau Pinang 0.32 0.30 0.32 6 7 5 
Sabah 0.31 0.30 0.30 7 5 7 
Sarawak 0.32 0.30 0.31 5 5 6 
Selangor 0.42 0.41 0.42 4 4 4 
Terengganu 0.49 0.45 0.50 3 3 3 
Kuala Lumpur 0.28 0.29 0.28 8 8 8 
 
Cronbach’s alpha shows the exposure index ranking has an 
excellent reliability of 0.99. The average shift in rank was 
calculated to assess the reliability of the rank against the 
median rank. There was no shift in rank using equal weighting 
method, while unequal weight method resulted in a shift of 
0.36 points and principal component analysis method resulted 
in a shift of 0.21 points. 
 
3.3 Reliability of Susceptibility Index 
 
Table 4 shows the susceptibility index values using various 
weighting methods. Ten states were consistently ranked while 
4 states saw their ranks shifting within 1 position. The states 
which were ranked consistently are Sarawak (1st), Kelantan 
(2nd), Sabah (3rd), Perak (6th), Perlis (7th), Melaka (10th), Johor 
(11th), Pulau Pinang (12th), Kuala Lumpur (13th) and Selangor 
(14th). Whereas, Kedah and Terengganu alternate between the 
4th and 5th position while Negeri Sembilan and Pahang 
alternate between the 8th and 9th position. The Cronbach’s 
alpha value of 0.99 indicates the consistency of the rank 
among the three different weighting methods. Adopting the 
median rank as reference rank, the average shift in rank using 
equal weighting and unequal weight is zero respectively, 
while principal component analysis is 0.29 position. 
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Table 4: Susceptibility index (SI) and ranks using various weighting 
methods 

State SI Score SI Rank 
EW UW PCA EW UW PCA 

Johor 0.33 0.33 0.32 11 11 11 
Kedah 0.49 0.48 0.47 4 4 5 
Kelantan  0.62 0.60 0.63 2 2 2 
Melaka 0.34 0.35 0.34 10 10 10 
N. Sembilan 0.38 0.38 0.37 8 8 9 
Pahang 0.37 0.38 0.38 9 9 8 
Perak 0.42 0.44 0.42 6 6 6 
Perlis 0.39 0.40 0.40 7 7 7 
Pulau Pinang 0.26 0.27 0.26 12 12 12 
Sabah 0.56 0.53 0.55 3 3 3 
Sarawak 0.71 0.71 0.71 1 1 1 
Selangor 0.22 0.21 0.21 14 14 14 
Terengganu 0.47 0.46 0.49 5 5 4 
Kuala Lumpur 0.24 0.24 0.22 13 13 13 
 
3.4 Reliability of Resilience Index 
 
The resilience index and ranks using various weighting 
methods is tabulated in Table 5. The ranks for ten states were 
consistent, Sabah (1st), Johor (4th), Sarawak (5th), Perak (6th), 
Pulau Pinang (6th), Negeri Sembilan (10th), Melaka (11th), 
Perlis (12th), Terengganu (13th), Kuala Lumpur (14th). Four 
states saw their ranks shifting within 1 position, namely 
Kedah and Kelantan alternating between 2nd and 3rd position 
while Pahang and Selangor between 7th and 8th position. 
 

Table 5: Resilience index (RI) and ranks using various weighting 
methods 

State RI Score RI Rank 
EW UW PCA EW UW PCA 

Johor 0.63 0.64 0.66 4 4 4 
Kedah 0.74 0.75 0.78 2 3 2 
Kelantan  0.74 0.76 0.73 3 2 3 
Melaka 0.47 0.49 0.49 11 11 11 
N. Sembilan 0.48 0.50 0.50 10 10 10 
Pahang 0.52 0.54 0.54 8 7 8 
Perak 0.55 0.55 0.58 6 6 6 
Perlis 0.44 0.46 0.46 12 12 12 
Pulau Pinang 0.50 0.51 0.52 9 9 9 
Sabah 0.76 0.77 0.78 1 1 1 
Sarawak 0.63 0.63 0.64 5 5 5 
Selangor 0.53 0.54 0.55 7 8 7 
Terengganu 0.43 0.46 0.45 13 13 13 
Kuala Lumpur 0.27 0.24 0.27 14 14 14 
 
Similar to the exposure index and susceptibility index, the 
calculated Cronbach’s alpha for the various weighting method 
for the resilience index is 0.99 indicating high reliability. The 
average shift in rank is tested for the equal weighting, unequal 
weighting and principal component analysis and was found to 
be 0.00, 0.29 and 0.00 respectively. 
 

3.5 Computation of FVI 
 
Having tested the reliability of the three factor indices, the 
next step involved aggregating the factor indices to an overall 
composite index. As explained in the methodology, the 
additive mean and geometric mean were used to aggregate the 
exposure index (EI), susceptibility index (SI) and resilience 
index (RI) to compute the flood vulnerability index (FVI).  
 
Table 6 presents the computed FVI scores based on two 
aggregation methods and three weighting methods. Using the 
additive mean, each factor is seen to equally contributing to 
the state’s overall vulnerability, unlike the geometric mean 
which lowers the overall vulnerability index when one of the 
factor indices has a low score. 
 

Table 6: FVI scores of the various computation methods 

State 
FVI Score 

Additive mean Geometric mean 
EW UW PCA EW UW PCA 

Johor 0.39 0.39 0.40 0.35 0.34 0.36 
Kedah 0.45 0.45 0.46 0.36 0.36 0.36 
Kelantan  0.66 0.65 0.66 0.65 0.64 0.65 
Melaka 0.29 0.29 0.29 0.20 0.20 0.20 
N. Sembilan 0.30 0.31 0.30 0.20 0.21 0.20 
Pahang 0.47 0.46 0.48 0.46 0.46 0.48 
Perak 0.38 0.39 0.39 0.35 0.35 0.35 
Perlis 0.29 0.30 0.30 0.19 0.19 0.20 
Pulau Pinang 0.36 0.36 0.37 0.35 0.35 0.35 
Sabah 0.55 0.53 0.54 0.51 0.50 0.51 
Sarawak 0.55 0.55 0.55 0.52 0.51 0.52 
Selangor 0.39 0.39 0.39 0.37 0.36 0.36 
Terengganu 0.46 0.45 0.48 0.46 0.45 0.48 
Kuala Lumpur 0.26 0.26 0.26 0.26 0.26 0.26 
 
Table 7 shows the FVI rankings based on various computation 
methods. Kelantan ranks the first, followed by Sarawak (2nd) 
and Sabah (3rd) under all scenarios. The difference in ranking 
changes between 1 to 2 positions for Pahang (from 4th to 5th), 
Terengganu (from 4th to 5th), Kedah (from 5th to 7th), Perak 
(from 8th to 10th), Pulau Pinang (from 9th to 10th), Melaka 
(from 12th to 13th) and Perlis (from 12th to 14th). The biggest 
difference in rankings is observed for Selangor (from 6th to 
9th), Johor (from 7th to 10th), Negeri Sembilan (from 11th to 
14th) and Kuala Lumpur (from 11th to 14th). 
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Table 7: FVI rankings of the various computation methods 

State 
FVI Rank 

Additive mean Geometric mean 
EW UW PCA EW UW PCA 

Johor 7 9 7 8 10 8 
Kedah 6 5 6 7 6 6 
Kelantan  1 1 1 1 1 1 
Melaka 13 13 13 12 13 12 
N. Sembilan 11 11 11 12 12 14 
Pahang 4 4 4 4 4 5 
Perak 9 7 8 10 8 10 
Perlis 12 12 12 14 14 13 
Pulau Pinang 10 10 10 9 9 9 
Sabah 3 3 3 3 3 3 
Sarawak 2 2 2 2 2 2 
Selangor 8 8 9 6 7 6 
Terengganu 5 5 5 4 5 4 
Kuala Lumpur 14 14 14 11 11 11 
 
The difference between aggregation using additive mean and 
geometric mean is substantial. The compensability is constant 
in additive aggregation, whereas under the geometric 
aggregation, the lower the values of the factor indices, the 
lower the vulnerability. Test of sensitivity and reliability 
could help with interpretation of the results. 
 
3.6 FVI Sensitivity and Reliability Analysis 
 
Table 8 shows the average shift in vulnerability rankings from 
the median rank. The statistics comprise the relative shift in 
the position of all states in a single number. The value of തܴ௦ 
closer to zero means the more similar is the ranking to the 
median ranking. The use of additive mean using equal 
weighting indicates the smallest difference from the median 
rank. The average shift in rank using geometric mean is 
higher, this is probably caused by the partial compensability 
of the geometric mean which prevents high value of one 
vulnerability factor from compensating the very low value of 
vulnerability of the other factors.  
 

Table 8: FVI rankings of the various computation methods 
Aggregation 

method 
Additive mean Geometric mean 

EW UW PCA EW UW PCA 
Average rank 
shift, തܴ௦ 

0.36 0.50 0.43 0.71 0.50 0.79 

 
Table 9 presents the Spearman rank order correlation between 
the different methods of weighting and aggregation method. 
The correlation coefficient ranges between 0.92 to 0.99 
indicating very high positive correlation among the different 
methodology. There is significant agreement among the 
ranking of the states on the FVI since all coefficients are 
significant at p < 0.01. Lastly, Cronbach’s alpha shows the 
flood vulnerability ranking has an excellent reliability of 0.99. 
 

Table 9: Spearman rank-order correlation for various weighting and 
aggregation methods 

Correlation matrix of derived FVI rankings 

 EWa UWa PCAa EWg UWg PCAg 
EWa 1      UWa 0.98 1     PCAa 0.99 0.98 1    EWg 0.95 0.92 0.93 1   UWg 0.94 0.96 0.94 0.97 1  PCAg 0.94 0.92 0.92 0.98 0.96 1 

Note:  Coefficients are all significant at the p < 0.01 level (two 
tailed). EW – equal weight, UW – unequal weight, PCA – 
weight derived from principal component analysis, a – 
additive mean, g – geometric mean 
 
Within these analyses, the robustness of the ranks was tested 
through a methodological approach. Overall, the ranks 
determined using the equal weighting and additive 
aggregation method lies closely to the median rank and the 
narrow confidence interval implies reliability of those ranks. 
Figure 5 presents the validation results of the ranks derived 
using the additive aggregation with equal weight method, 
median ranks and the 95% confidence interval. 
 

 
Figure 5: Flood vulnerability ranks with uncertainty consideration 

 
The null hypothesis is there is no significant agreement 
among the rankings of the states based on the FVI. The null 
hypothesis was rejected at 99% confidence level and there is 
statistically significant agreement among the ranks despite 
different weighting techniques and aggregation methods were 
employed. The confidence level for the FVI was validated by 
comparing the ranks with median ranks and also the 95% 
confidence interval. 
 
4. FUTURE WORKS 
 
We have presented the results of the flood vulnerability index 
using a methodological approach. While spreadsheet software 
was used to organise, store and analyse the data, it has 
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limitations in managing the large data sets. Future works 
concerns improving the database by using Structural Query 
Language (SQL) which is a standard language for querying 
and editing information, as in the case of [37] who developed 
a spread-sheet based user interface to perform data query and 
update data. 
 
5. CONCLUSION 
 
Our analyses put forward a first attempt to quantify flood 
vulnerability assessment in Malaysia, hence the selection of 
indicators may not be comprehensive since indicators were 
selected based on relevance and data availability. We have 
quantitatively evaluated the ranking of flood vulnerability of 
the states in Malaysia through its three factors of exposure, 
susceptibility and resilience. We assessed the relevance of 21 
socio-economic and environmental indicators to reflect these 
three factors of vulnerability. The flood vulnerability index 
was constructed using three weighting techniques and two 
aggregation techniques.  
 
On the basis of the results, we concluded that the FVI scores 
and ranks do not vary much due to different weighting and 
aggregation techniques. In this study, we found that the 
ranking of the states is not unduly affected by assigning equal 
weightage and additive aggregation method. The results of 
this study provided valuable knowledge about the current 
state of vulnerability of the states in Malaysia to flood. The 
results also provided a baseline for further flood vulnerability 
assessments with the inclusion of new indicators. 
 
APPENDIX 
 

Indicators Min Mean Max SD 
E1 Flood prone area (%) 1.9 9.6 22.6 7.2 

E2 Population in flood 
prone area (%) 

4.6 22.1 55.4 17.5 

E3 Population density in 
flood prone area 
(persons/km2) 

44 1,226 11,935 3,107 

E4 Average annual 
damage (RM million) 

2.29 65.36 157.65 50.28 

E5 Average maximum 
daily rainfall (mm) 

87 231 537 148 

E6 Flood frequency 7 23 86 21 

E7 Flood water depth (m) 0.5 1.9 7.0 1.7 

S1 Children below 15 (%) 19.7 24.4 30.5 3.0 

S2 Elderly above 65 (%) 3.2 6.8 9.9 1.7 

S3 Disabled persons (%) 0.7 1.6 2.3 0.4 

S4 Inequality (Gini) 0.324 0.363 0.404 0.027 

S5 Houses with poor 
building materials (%) 

0.8 20.5 46.0 15.3 

S6 Agricultural workers 
(%) 

0.0 7.1 36.1 9.7 

S7 Illiterate population 
(%) 

1.2 2.8 7.4 1.7 

R1 Household median 
income (RM) 

3,079 4,969 9,073 1,569 

R2 GDP per capita (RM) 12,812 36,560 101,420 21,471 

R3 Emergency services 
(hospital beds per 
10,000 population) 

8.8 15.4 27.3 4.5 

R4 Volunteers (per 10,000 
population) 

476 1,095 1,794 379 

R5 Evacuation shelter 
(capacity/10,000 
population) 

64 667 1,479 471 

R6 Potable water supply 
(%) 

65.4 94.7 100.0 10.0 

R7 Internet access (%) 70.0 90.1 79.4 6.4 
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