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Beeswaxes are interesting solid lipids for the 
development of nanostructured lipid carriers 
(NLC), and their origin can be either natural or 
synthetic. Due to this difference, their performance 
should be distinct and unstable formulations can 
be generated. The objective of this work was to 
investigate miscibility and structural changes 
(polymorphism) in pre-formulations (blends of 
solid and liquid lipids) using synthetic and natural 
beeswaxes in combination with copaiba oil (a 
natural liquid lipid), in the concentration range of 
5.0 to 50.0% (w/w). Raman spectra were acquired 
over a region of 4 mm2 (mapping mode), dead 
pixels were removed using Independent 

Components Analysis (ICA) and Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) 
was then used to generate the images. Samples were analyzed at the initial time and after 3 months, using 
the Distributional Homogeneity Index (DHI) and standard deviation of the histograms. The pre-formulation 
containing synthetic beeswax showed different structural forms before and after melting, and structural 
changes over time, depending on the amount of the liquid lipid incorporated. These results demonstrate 
how spectroscopic imaging techniques can be valuable in pharmaceutical development, as well as the 
importance of choosing the type and proportion of solid lipid to achieve stable NLC formulations.
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INTRODUCTION 
Beeswaxes (BW) are a source of lipids that can be used in the development of nanostructured lipid 

carriers (NLC) [1,2] and they can be of either natural or synthetic sources. Natural beeswaxes (nBW) 
are produced by the species Apis mellifera and Apis cerana. The composition of this product is variable, 
depending both on the bee species and the region of production. It is a complex mixture, composed of 
more than 300 components, divided into: hydrocarbons – mainly C27-C33 chains (12-16%), free fatty 
acids with C24-C32 (12-14%), free fatty alcohols – C28-C35 (~ 1%), monoesters and hydroxymonoesters 
– C40-C48 derived mainly from palmitic, 15-hydroxpalmitic and oleic acids (35-45%) and complex esters 
(15-27%) such as 15-hydroxy-palmitic acid or diols [3]. Synthetic BW (sBW) (CAS number 71243-51-1) 
are defined by the United States Environmental Protection Agency (EPA) as “the product of the complex 
reaction of mixtures of acids and alcohols that simulate the composition of natural BW. It consists mainly 
of alkyl esters – C18-C30 of fatty acids C16-C32, fatty acids – C16-C32, and alkanes – C22-C34” [4]. 
Copaiba (Copaifera officinalis) is a tree native to South America and the oil-resin produced by it is known 
for its medicinal properties (e.g., anti-inflammatory, antiseptic and antitetanic). Copaiba oil is rich in 
sesquiterpene hydrocarbons, mainly β-caryophyllene which is responsible for its biological activites [5,6]. 
Other compounds found in this oil are diterpene acids, copalic acid, hardwickiic acid, allo-aromadendrene, 
germacrene B, β-bisabolene, α-cadinene, γ-cadinene, trans-α-bergamotene and α-humulene [7]. 

Attama and coworkers characterized mixtures of nBW and cocoa oil for NLC production and demonstrated 
that formulations with 50 and 75% (w/w) of oil could be used for the development of lipid nanoparticles [8]. 
Ribeiro et al. developed formulations of nBW with copaiba oil, which showed good physicochemical stability 
for 12 months, with prolonged in vitro release and in vivo effect of lidocaine [1]. Lima et al. developed 
solid lipid nanoparticles (SLN) and NLC formulations with beeswax and stearic acid for the delivery of 
tacrolimus. BW allowed formulations with high drug upload without stability issues [9]. The polymorphism 
of solid excipients used in the development of SLN and NLC is one of the major problems that can promote 
shelf-instability in these formulations, probably due to the expulsion of the Active Pharmaceutical Ingredient 
(API) from the nanoparticles. However, this characteristic does not hamper the use of a given excipient, but 
rather indicates that attention with miscibility issues should be taken at the very early stages of formulation. 
One example is the cocoa and shea butter used on NLC by Ribeiro et al. [1].

Beeswax is a solid lipid that can show polymorphism. Therefore, the characterization of this raw material 
is essential prior to its use in pharmaceutical formulations [10]. In this sense, the use of Raman imaging 
in the early stages of pharmaceutical development can give much information, since this technique is 
sensitive to both chemical and physical changes in the material. Using this technique, mixtures of solid 
and lipid excipients (which will here be called ‘pre-formulations’) can be evaluated prior to their mixing 
with surfactants and other excipients, with the aim of forecasting stability issues. This approach allows a 
rational screening of excipients during the NLC development. Thus, it is possible to avoid instabilities and 
waste of money during this step. We have recently demonstrated how this tool can be useful for evaluating 
the miscibility of excipients such as Capryol® 90, Precirol ATO5®, Dhaykol 6040® and cetyl palmitate by 
combining Raman imaging with classical least squares (CLS). In this previous work, the standard deviation 
of the histograms of pixel was used to evaluate the miscibility. However, this parameter can also be 
assessed with the help of the distributional homogeneity index (DHI), a technique based on macropixel 
analysis developed by Sacré et al. [11]. DHI does not require a calibration model and may be used to 
compare the homogeneity of different formulations. Also, it avoids the subjective evaluation through the 
use of the kurtosis of the histograms.  

It should be noted that defects may occur in vibrational spectroscopy images, due to instrumental, 
sample presentation, or radiation issues. These problems generate defects: the affected pixels being 
called dead/bad pixels, non-informative background or outliers, which can all affect the performance of 
models for identification, classification and quantification [12]. Therefore, it is necessary to eliminate these 
defects before applying a chemometric method. In some cases, these pixels can be purged with adequate 
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preprocessing or replaced by the mean or median of the neighbors. Since many of these defects are 
physical and independent phenomena, independent components analysis (ICA) can be used to correct 
these defective pixels [13,14]. ICA is a Blind Source Separation (BSS) method based on Central Limit 
Theorem that states that mixtures of several independent source signals should give intensity distributions 
which are more gaussian than those of the individual source signals.

Therefore, the objective of this work was to evaluate the structural transformations and miscibility 
between synthetic and natural beeswaxes and copaiba oil - in the range of 5.0-50.0% (w/w) - using Raman 
mapping and chemometrics. In a first step, the two different beeswaxes were analyzed by X-ray diffraction, 
differential scanning calorimetry (DSC) and Raman spectroscopy. In the second step, ICA was used to 
eliminate artefacts in the spectral images. Afterwards, chemical maps were built using MCR-ALS scores and 
their homogeneity was evaluated using the standard deviation of histograms (STD) and the DHI criterion.

MATERIALS AND METHODS
Materials

Natural beeswax was donated from GM Ceras (Brazil) while synthetic beeswax (Meghwax SEW 200) 
was provided by Megh Industria e Comércio (Brazil). Copaiba oil (Copaifera officinalis) was purchased 
from Phytoterápica Cosméticos (Brazil).

DSC Curves
A TA Instruments equipment (model Q100) was used in the temperature range of 20 to 250 ºC, with 

heating rate of 10 ºC/min and inert atmosphere (argon 50 mL/min). Beeswax samples (3-14 mg) were 
weighed and placed in hermetic aluminum pans for the analysis.

X-Ray Diffraction
The beewaxes used in pre-formulations were analyzed by X-ray diffraction before and after melting. A 

Shimadzu X-ray diffractometer (model XRD7000) was used under the following conditions: Cu radiation 
(1.54060 A), voltage of 40 kV, current of 30.0 mA, 2 degrees 2θ / minute, in the range of 5.0 to 50.0 
degrees 2θ.

Sample Preparation and Raman Mapping
Five pre-formulations were developed, varying copaiba oil from 5.0-50.0 (% w/w). The samples were 

prepared by heating (10 ºC above the melting point of the beeswax) and copaiba oil was added with 
stirring until a visually homogeneous mixture was obtained. The samples were cooled to room temperature 
(25 ± 2 ºC) in an aluminum cell and an area of 2.0 × 2.0 mm (4 mm2) was mapped using a Raman Station 
400 (Perkin Elmer, CT, USA). A 785 nm laser of was used as an excitation light and power of 100 mW.

The exposure time was 3s/pixel and each spectrum was the average of 2 exposures. The step size 
was 50 μm and the spectral range 600-3200 cm-1 with a resolution of 4 cm-1. Each sample map (4 mm2) 
generated a cube of data with dimensions of 40 × 40 × 651, where 40 was the number of pixels at x and 
y axis and 651 the number of spectral variables. The total mapping time for each image acquisition was 4 
hours. The flasks were sealed and stored in the dark. Raman images of all samples were obtained at the 
initial time and 3 months after preparation. The period of 3 months was chosen based on recommendations 
of ICH Q1A(R2) guideline. Three months is the time that for preformulation stability studies are normally 
carried out by pharmaceutical companies [15].

Data Processing
Spikes from Raman spectra were excluded using an algorithm developed by Sabin and co-workers 

[16]. The spectral range of 1804 - 1044 cm−1 was selected. The data cube was unfolded to a 2D (NM × 
λ) matrix, where M is number of pixels on the x axis, N is the number of pixels on the y axis and λ is the 
number of spectral variables. The spectral baseline was corrected by asymmetric least squares [17] and 
unit vector normalization.
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Chemometric Analysis
Independent Components Analysis

ICA is a BSS method proposed by Jutten and Herault [18] to extract pure underlying signals (source 
signals) from a set of mixed signals (Equation 1):

	 	 (1)

where X  is the data matrix, S is a matrix of independent source signals, A is a 
matrix of mixing coefficients or proportions of the pure signals, k is the number of independent components 
(IC), λ is the number of variables (wavenumbers) and n is the number of samples/pixels. 

ICA assumes that the source signals and their proportions in the analyzed mixtures are unknown, and 
it aims to extract them by using the criterion of maximum independence among the source signals. In 
this work the Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm [19] was used. This 
algorithm has the advantage of being deterministic, i.e., not subject to convergence problems since initial 
random estimates are not necessary [20]. An important parameter during the construction of the ICA model 
is the choice of the number of components since for a model with A factors and one with A+1 factors, some 
ICs do not have the same index in both models, and/or do not have the same signal or are simply different. 
In this work the Durbin-Watson criterion was used [21]. After the application of ICA with the optimal number 
of ICs, one IC was identified as containing the information concerning the physical defect, which was 
removed from the data matrix using Equations 2 and 3:

	 	 (2)

	 	 (3)

where  refer to the ICA proportions, is the source signal of the IC with physical 
information and  represents the matrix after subtraction of this information. 

Multivariate Curve Resolution – Alternating Least Squares
MCR-ALS is the most popular algorithm for multivariate curve resolution, based on Equation 4:

	  	 (4)
 

where C is the concentration profile (MN x G), S1 the spectral profile (λ x G) and E is residual matrix (MN  
x λ) for G components. C and S1 are iteratively calculated until convergence. This iterative aspect of the 
algorithm presents advantages as it is possible to model spectral profiles with small changes that could be 
caused by interactions. The number of components was chosen based on singular value decomposition 
(SVD). The constraints of non-negativity of both spectral and concentration profiles were used in this work. 
Equality constraint was also used for copaiba oil spectrum in the model for natural BW. The pure excipient 
spectra were used as initial estimates of S. For the MCR analysis the MCR_gui version 2 toolbox [22] was 
used.

Distributional Homogeneity Index
DHI is a subsampling technique based on analysis of macropixels. A macropixel is defined as “square 

cluster of neighboring pixels with an intensity value equal to the average value of the included pixels”. In 
the first step, the chemical map was sampled for all possible macropixels of size 22. In the next step, all 
macropixels of size 33 were evaluated. This continues until the macropixel size was equal to whole chemical 
map size (continuous-level moving block). At each step, the standard deviation of the macropixels was 
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calculated and plotted vs. the macropixel size to generate the homogeneity curve [11,23]. Afterwards the 
chemical map was randomized several times (usually 50 to 100) and a homogeneity curve of each map 
was calculated. DHI was obtained from the ratio of the area under the homogeneity curve (AUC) of the 
original map and the AUC of the randomized map. So, the greater the DHI values, the more heterogenous 
the sample [11]. All calculations were done using Matlab version 8.3 (Mathworks Inc., Natick MA, USA).  

RESULTS AND DISCUSSION
Structural Characterization of the Beeswaxes

Before the construction of the models, Raman spectra, DSC curves and X-ray diffractograms of the 
beeswaxes were acquired, before and after the fusion (Figure 1). Synthetic wax displayed structural 
changes after melting, which was not observed for nBW. X-ray diffraction analysis was performed on 
natural and synthetic BW in order to verify the alteration in the crystalline structure, (Figure 1a and 1b). 
While there was a clear loss of structure in sBW (due to peak disappearance), no significant changes 
(except for a slight shift to higher 2θ, from 21.0 to 24.0, after melting) were observed in the natural sample. 
A very weak peak observed at 5.7º in the sBW diffractogram before melting - corresponding to second 
or higher order of the long spacing reflection of the diester fraction (monoclinic structure) - disappeared 
after the melting process. Higher intensities localized at 21.3 to 24.2 in both samples were related to the 
orthorhombic structure of hydrocarbon/monoester fractions [10] and these peaks seem to be characteristic 
of beeswax [2,9]. In the DSC curves the polymorphism of sBW was identified by the decrease in the 
melting point (63.76 to 62.06 ºC) and the appearance of a new peak at 54.5 ºC (Figure 1c). In nBW, the 
curve does not change significantly.

This change in sBW was also observed in the Raman spectra due to the disappearance of the peak 
around 1410 cm−1 (as highlighted in Figure 1e). Therefore, for the construction of the sBW model, the 
Raman spectra of BW before and after melting were considered as two distinct excipients, while in case of 
nBW only one form of solid excipient was considered. 

Raman Imaging and Chemometrics Evaluation of Natural and Synthetic Beeswaxes as 
Matrices for Nanostructured Lipid Carriers Development 
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Figure 1. X-ray diffractograms of: (a) synthetic and (b) natural BW. DSC curves of: (c) synthetic and 
(d) natural BW. Raman spectra of: (e) synthetic and (f) natural BW. 
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Removal of Dead Pixels
Before the use of MCR-ALS to build chemical maps, an initial analysis was made using CLS to detect 

defective pixels in the Raman images. Three examples are shown in Figure S1 for samples with 5.0% 
(w/w) copaiba oil at time zero (freshly prepared) and after 3 months, and for the 20.0% (w/w) copaiba oil 
sample, after 3 months. 

In the first case (Figure S1a), some lines showed unusually high scores (red color) in the original 
dataset and because of this, the histogram displayed a tail on the left-hand side. In some situations these 
defective pixels could be replaced by the median of the neighbors [12]. In this dataset, however, this 
approach was not possible because some neighboring pixels were also defective. ICA could be a good 
tool to solve this problem. In this dataset there are only a few defective pixels, thus, 10 lines containing 
only these problematic pixels were created (entitled ‘augmented defective spectra’ in Figure S1a), with the 
objective to extract more easily these physical defects, as an independent component. Figure S1d shows 
the source signal of IC2 related to this phenomenon. 

In the second and third cases (Figures S1b-S1c), it is clear that several pixels have defects, and thus, 
it is not necessary to use the strategy of augmenting with defective pixels, since ICA could be applied 
directly to these samples to isolate the problem of dead pixels. Figures S1d to S1f show that IC2 and IC4 
are related to this problem, in the second and third cases, respectively. In other words, these ICs refer to 
physical problems in the images and are not due to a specific chemical compound. 

After identification of the ICs containing information about dead pixels, Equations 2 and 3 were applied 
in Raman spectra. The chemical maps from CLS after this correction (Figures S1g-S1i) indicated that ICA 
was efficient in the correction.  

MCR-ALS Results of Natural Beeswax
After ICA correction of these three samples, the chemical maps were created using MCR-ALS with 

an augmented matrix with all concentrations and times. In the case of nBW, the model converged in 15 
iterations, the lack of fit (LOF) of PCA was 7.51% and the percent of explained variance was 96.96%. Figure 
2 shows the S matrix recovered (pure spectra recovered) and the original Raman spectra of excipients in 
these pre-formulations. Correlation coefficients were higher than 0.9302, without rotational ambiguity in 
any of the recovered spectral profiles. It should be emphasized that, as the equality constraint was used 
for the copaiba oil spectrum, this profile did not suffer alterations and, therefore, its correlation coefficient 
was equal to 1. Without the use of this constraint, rotational ambiguity occurred in the spectral region of 
1320 to 1270 cm−1 and 1150 to 1050 cm−1 (Figure S2) resulting in a decrease of the correlation coefficient 
for the copaiba oil.

Figure 2. Original Raman spectra and spectral profile recovered by 
MCR-ALS, for nBW and copaiba oil pre-formulations.

Figure 3 shows the solid lipid maps and histograms obtained for these pre-formulations using nBW. 
However, the total number of chemical maps generated was high: for just one excipient, 10 maps and 
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histograms were obtained (five concentrations at two different times) giving a total of 20 Raman maps 
for the two lipids. This large volume of data makes the interpretation difficult, and for this reason, the 
experimental concentrations were plotted against the mean values of the scores, along with the standard 
deviations of the histograms (Figure 4). 

Figure 3. MCR-ALS score maps for nBW excipient a) at initial time and b) after 3 months.

Figure 4. STD and mean of MCR-ALS scores for: a) nBW and b) copaiba oil.

Braz. J. Anal. Chem., 2021, 8 (32), pp 116–130.
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As can be seen in Figure 4, there is no tendency to differentiate the samples in relation to time, i.e., 
samples of the initial time have sometimes higher and sometimes lower mean values than samples after 
3 months. However, it is interesting to note that the differences between the samples (initial vs. 3 months) 
generally tend to be higher as the amount of the liquid excipient increases, indicating that more stable 
samples are produced with lower amounts of the liquid lipid. In addition to visual inspection of maps, the 
DHI and standard deviation of the histograms (STD) were used for evaluation of the results, as shown in 
Table I. As reported by Ma et al. [24] and Farkas, Nagy and Marosi [23], DHI is a suitable tool to evaluate 
the miscibility of components in chemical images. However, its use alone is not recommended because 
sometimes it cannot represent the distributional homogeneity and, therefore, it is also interesting to 
evaluate the images associated with the STD of the corresponding histograms. Farkas, Nagy and Marosi 
[23] also suggested one modification, achieved by weighting the scores and relative standard deviations. 

Table I. STD and DHI obtained for samples developed using nBW

nBW Copaiba Oil

Time
Concentration of 

copaiba oil 
(% w/w)

STD DHI STD DHI

Initial

5.0 1.4 2.8 1.5 3.5
15.6 3.6 4.7 4.1 4.7
20.0 2.6 2.7 2.9 2.9
30.0 4.2 4.0 4.2 3.8
49.8 4.3 3.2 4.2 3.2

After 3 
Months

5.0 0.9 2.2 0.3 1.8
15.6 1.9 4.5 2.1 4.7
20.0 4.4 1.8 3.8 4.3
30.0 3.5 4.3 3.7 4.3
49.8 4.5 3.2 4.0 3.2

The results shown in Figure 4 and Table I indicate that copaiba oil does not have miscibility problems 
with the nBW, as low STD and DHI were observed. The standard deviations (STD) varied between 0.3 to 
4.5 and DHI from 1.8 to 4.7.

Another factor to be evaluated is that there is no difference between the STD and DHI values in relation 
to the time of the samples. This implies no alterations of formulations/phase separation in natural BW pre-
formulations over the evaluated time period (3 months).  

MCR-ALS Results of Synthetic Beeswax
The model for formulations using sBW converged after 63 iterations, with lack of fit (LOF) in Principal 

Component Analysis (PCA) of 0.39% and 99.31% of the explained variance. Figure 5 shows S1 (spectral 
profile recovered by MCR-ALS) and original Raman spectra of excipients. There were no problems of 
rotational ambiguity, that is, the peak due to one compound was not recovered in the spectrum of another. 
In addition, the correlation coefficients were above 0.9743. The spectral profile recovered for copaiba 
oil (Figure 5c) had a signal intensity lower than the those of the beeswaxes, therefore the y-axis was 
changed. In this case, three profiles were recovered, since sBW showed spectral differences before and 
after melting, especially in the region of 1400-1500 cm−1.

Raman Imaging and Chemometrics Evaluation of Natural and Synthetic Beeswaxes as 
Matrices for Nanostructured Lipid Carriers Development 
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Figure 5. Original Raman spectra and spectral profiles recovered by MCR-ALS (see text) for sBW and copaiba 
oil formulations.

The histograms and chemical maps built using MCR-ALS scores for sBW before melting are shown 
in Figure S3. Table II shows the STD and DHI values obtained for each excipient. As can be seen, the 
standard deviations (STD) and DHI values tend to be slightly higher than those observed for nBW. Copaiba 
oil did not have miscibility problems with two forms of synthetic beeswax, with the low STD and DHI values. 

Figure 6 displays the plot of experimental concentrations against the mean values of the scores, along 
with the standard deviations of the histograms. As observed in Figure 6a, the mean values of the images 
at the initial times are lower than in the images acquired after 3 months. On the other hand, in the case of 
the sBW form found after melting (Figure 6b), the inverse occurs: the values at the initial time are higher 
than in the other times. This tendency did not appear in case of copaiba oil. Therefore, a polymorphic 
transformation is probably taking place in the sBW over time, in which the form that appeared after the 
melting process is converting back into the initial form. 

Moreover, the sample with the highest amount of BW (90%) showed smaller difference between the 
initial time and after 3 months, similar to the results obtained for the nBW. Thus, one assumption is that 
the presence of liquid excipient caused changes in the mobility of the structures of the solid excipient, 
with a greater impact at higher concentrations. This can also be one of the explanations for the better 
performance of NLC formulations at lower concentrations of the liquid lipid [1,25].

Figure 6. STD and mean of MCR-ALS scores for: a) sBW before melting, b) sBW after melting and c) copaiba 
oil for formulations developed using synthetic wax.

Braz. J. Anal. Chem., 2021, 8 (32), pp 116–130.
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Table II. STD and DHI obtained for samples developed using sBW

sBW Before Melting sBW After Melting Copaiba Oil

Time
Concentration of 

copaiba oil 
(% w/w)

STD DHI STD DHI STD DHI

Initial

5.1 5.3 2.6 5.6 2.6 1.6 3.4
15.0 6.9 4.4 6.5 4.1 2.0 4.1
20.4 8.0 5.7 8.0 5.1 1.9 2.5
29.9 9.4 5.1 9.4 4.8 2.1 2.1
49.6 4.1 3.2 4.3 1.9 1.8 4.9

After 3 
Months

5.1 5.2 4.2 5.9 4.1 1.4 2.9
15.0 8.1 5.2 9.3 5.0 3.2 3.7
20.4 4.8 3.8 5.1 3.3 1.8 4.1
29.9 6.8 4.3 8.1 4.2 2.6 2.9
49.6 3.8 2.1 4.4 2.3 1.6 2.9

Comparing the STD and DHI values of sBW with those of nBW, sBW have higher values than nBW. 
However, copaiba oil STD and DHI are similar in both cases, indicating this difference is due to the two 
polymorphic forms. Moreover, the homogeneity of the formulations does not seem to change significantly 
over the time (i.e., neither the STD and DHI increased significantly nor did two distributions appear in the 
histograms). 

CONCLUSIONS
A structural change was identified in the synthetic BW after melting, which was not observed for the 

natural BW using DSC, DRX and Raman techniques. But the miscibility of natural and synthetic BW with 
copaiba oil was not significantly different, based on the STD and DHI values. Nevertheless, the form that 
appeared after melting of sBW, seems to transform back to the initial form (Figures 6a,b).

It was also observed that the differences between freshly prepared and 3 months samples tended to 
be higher as the amount of the liquid lipid increased in the pre-formulation. This influence of the liquid 
excipient in solid materials has also been found in other works [26,27] which makes it even more important 
to analyze the various properties of these mixtures of solid and liquid excipients, as a function of their 
concentrations, miscibility and physical changes.  
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SUPPLEMENTARY MATERIAL

Figure S1. Chemical maps obtained by ICA before correction for samples: (a) 5.0% (w/w) copaiba oil at time zero 
(freshly prepared), (b) 5.0% (w/w) copaiba oil after 3 months, and (c) for the 20.0% (w/w) copaiba oil sample, after 
3 months. Source signals: (d) IC2 for 5.0% (w/w) copaiba oil at time zero (freshly prepared), (e) IC3 for 5.0% (w/w) 
copaiba oil after 3 months, and (f) IC4 for the 20.0% (w/w) copaiba oil sample, after 3 months. Chemical maps 
obtained by CLS after correction for samples: (g) 5.0% (w/w) copaiba oil at time zero (freshly prepared), (h) 5.0% 
(w/w) copaiba oil after 3 months, and (i) for the 20.0% (w/w) copaiba oil sample, after 3 months. 
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Figure S2. Original Raman spectra and spectral profile recovered by MCR-ALS, for nBW and 
copaiba oil pre-formulations without equality constraint.

Figure S3. Histograms and chemical maps built using MCR-ALS scores for sBW before melting.
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