Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 4—April 2010
Letter

Hantavirus Pulmonary Syndrome, French Guiana

On This Page
Tables
Article Metrics
22
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: Hantaviruses are rodent-borne negative-sense RNA viruses belonging to the Bunyaviridae family, genus Hantavirus. Since the first report of a hantavirus in 1993 in the United States (1), different viruses belonging to this genus have been reported in the Americas (25). These New World viruses are responsible for a disease called hantavirus pulmonary syndrome (HPS), a respiratory illness caused by the inhalation of dust contaminated by rodent feces or urine containing the virus (68).

Until recently, no information was available concerning the presence of hantaviruses in French Guiana, a French overseas department (administrative unit) in South America. Nevertheless, the description of atypical pneumonia cases not related to any known etiologic agent and the identification of hantavirus reservoirs in neighboring countries led us to conduct a serologic study in a selected population of patients with compatible symptoms. The prevalence of immunoglobulin (Ig) G antibodies to hantavirus in this population was 1.42% (9). Subsequently, we systematically screened patients who had suggestive pathologies for hantavirus serology, which led us to the characterization of a divergent hantavirus.

On August 4, 2008, a 38-year-old man sought medical attention at the emergency department of Cayenne Hospital. He had had persistent symptoms of fever (>38.5°C), myalgia, diarrhea with melena, cough for 8 days, recurrent vomiting for 4 days, and dyspnea for 2 days. At consultation, tachypnea (respiratory rate 28/min) and oxygen desaturation (SaO2 83%) were observed. Chest radiograph showed bilateral diffuse interstitial infiltrates causing respiratory distress; mechanical ventilation was required. The patient was admitted to the intensive care unit for treatment of acute respiratory distress syndrome. Results of laboratory investigations performed when the patient was admitted showed thrombocytopenia (50,000 cells/mm3), leucocytosis (22,500 cells/mm3) associated with a high neutrophil count (20,300 cells/mm3), moderate hepatonephritis (alanine aminotransferase 17 IU/L, aspartate aminotransferase 31 IU/L, gamma-glutanyl transferase 44 IU/L; alkaline phosphatase 44 IU/L; creatinine 192 µmol/L and urea 9.3 mmol/L); and an elevated C-reactive protein concentration (>192 mg/L). Laboratory tests for infectious agents ruled out malaria, dengue, leptospirosis, Chagas disease, Q fever, cytomegalovirus, and HIV, and blood cultures were negative for bacterial growth. The patient remained under respiratory assistance for 25 days in the intensive care unit and was discharged from hospital 47 days after admission with a complete clinical recovery.

With no etiologic agent identified, 2 factors led to the suspicion of hantavirus infection: clinical symptoms compatible with HPS and the patient’s exposure to potential reservoirs. Indeed, a month before the onset of symptoms, he had moved to a rural municipality located near agricultural lands and forest.

Retrospective serologic investigations were performed with the 3 available serum samples obtained during the hospitalization. These samples were tested by IgM capture with inactivated Sin Nombre virus antigens and by indirect ELISA with recombinant antigens to detect IgG antibodies to Sin Nombre virus (10). IgM to Sin Nombre virus were present in the samples collected 8 and 9 days, respectively, after onset of the disease, confirming hantavirus infection. Furthermore, IgG to Sin Nombre virus were only detected in the convalescent-phase serum samples obtained on day 41 of the disease. These serologic results suggested a recent infection with hantavirus.

Molecular investigations were performed to characterize and identify the virus. Viral RNA was extracted from the 2 acute serum samples. Reverse transcription-PCR was performed with consensus primers targeting the S segment of the hantavirus genome as described in Johnson et al. (4). Amplification products of the expected size (434 bp of the nucleoprotein N-encoding region) were obtained from both samples. Cloning and sequencing of these products allowed obtaining a consensus sequence, which was deposited with GenBank (GQ179973). Database searches using BLAST (www.ncbi.nlm.nih.gov/blast) demonstrated that this sequence, although novel, is most similar to Rio Mamore hantavirus strain OM-556 (GenBank accession no. U52136), showing 83% nucleotide identity (393 bp analyzed, excluding the primers). In addition, comparison with representative hantavirus sequences from New World isolates showed that the amplified fragment exhibited from 73.5% to 81.9% nucleotide sequence identity and from 90.1% to 96.9% amino acid sequence identity (Table). This level of sequence divergence, as well as the geographic specificity of this hantavirus in French Guiana led us to provisionally name it Maripa virus.

Results of a serologic survey to identify cases of respiratory disease with no evident etiology led us to identify an HPS case-patient in French Guiana who had been infected with a new divergent hantavirus strain. Human hantavirus epidemics are associated with fluctuations of rodent populations caused by climatic, ecologic and environmental changes or with changes in human activities associated with nature or agriculture. Therefore, in this region where 90% of the land is tropical rain forest but in which there is increasing economic development, continuous surveillance for the virus in the human population would be beneficial. Surveys of potential reservoirs may help reduce the risk of viral emergence.

Top

Acknowledgment

This study was supported in part by the Centre National de Référence des Arbovirus financed by the Institut Pasteur de la Guyane and the Institut de Veille Sanitaire (St-Maurice, France). Grants were provided by the CPER/DocUP 2000–2006 and the FEDER 2007–2013 programs to the Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane.

Top

Séverine MatheusComments to Author , Félix Djossou, David Moua, Anne Marie Bourbigot, Didier Hommel, Vincent Lacoste, Philippe Dussart, and Anne Lavergne
Author affiliations: Institut Pasteur de la Guyane, Cayenne, French Guiana (S. Matheus, D. Moua, V. Lacoste, P. Dussart, A. Lavergne); Centre Hospitalier Andrée Rosemon, Cayenne (F. Djossou, A.M. Bourbigot, D. Hommel)

Top

References

  1. Nichol  ST, Spiropoulou  CF, Morzunov  S, Rollin  PE, Ksiazek  TG, Feldmann  H, Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science. 1993;262:9147. DOIPubMedGoogle Scholar
  2. da Silva  MV, Vasconcelos  MJ, Hidalgo  NT, Veiga  AP, Canzian  M, Marotto  PC, Hantavirus pulmonary syndrome. Report of the first three cases in Sao Paulo, Brazil. Rev Inst Med Trop Sao Paulo. 1997;39:2314.PubMedGoogle Scholar
  3. Lopez  N, Padula  P, Rossi  C, Miguel  S, Edelstein  A, Ramirez  E, Genetic characterization and phylogeny of Andes virus and variants from Argentina and Chile. Virus Res. 1997;50:7784. DOIPubMedGoogle Scholar
  4. Johnson  AM, Bowen  MD, Ksiazek  TG, Williams  RJ, Bryan  RT, Mills  JN, Laguna Negra virus associated with HPS in western Paraguay and Bolivia. Virology. 1997;238:11527. DOIPubMedGoogle Scholar
  5. Vincent  MJ, Quiroz  E, Gracia  F, Sanchez  AJ, Ksiazek  TG, Kitsutani  PT, Hantavirus pulmonary syndrome in Panama: identification of novel hantaviruses and their likely reservoirs. Virology. 2000;277:149. DOIPubMedGoogle Scholar
  6. Schmaljohn  C, Hjelle  B. Hantaviruses: a global disease problem. Emerg Infect Dis. 1997;3:95104. DOIPubMedGoogle Scholar
  7. Klein  SL, Calisher  CH. Emergence and persistence of hantaviruses. Curr Top Microbiol Immunol. 2007;315:21752. DOIPubMedGoogle Scholar
  8. Bi  Z, Formenty  PB, Roth  CE. Hantavirus infection: a review and global update. J Infect Dev Ctries. 2008;2:323. DOIPubMedGoogle Scholar
  9. Matheus  S, Meynard  JB, Rollin  P, Maubert  B, Morvan  J. New World hantavirus in humans, French Guiana. Emerg Infect Dis. 2006;12:12945.PubMedGoogle Scholar
  10. Ksiazek  TG, Peters  CJ, Rollin  PE, Zaki  S, Nichol  S, Spiropoulou  C, Identification of a new North American hantavirus that causes acute pulmonary insufficiency. Am J Trop Med Hyg. 1995;52:11723.PubMedGoogle Scholar

Top

Table

Top

Cite This Article

DOI: 10.3201/eid1604.090831

Related Links

Top

Table of Contents – Volume 16, Number 4—April 2010

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Séverine Matheus, Laboratoire de virologie, Centre National de Référence des Arbovirus, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010 – 97306 Cayenne CEDEX, French Guiana

Send To

10000 character(s) remaining.

Top

Page created: December 23, 2010
Page updated: December 23, 2010
Page reviewed: December 23, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external