Photosynthetica 2019, 57(1):9-17 | DOI: 10.32615/ps.2019.009

Photosynthetic and yield performance of wild barley (Hordeum vulgare ssp. spontaneum) under terminal heat stress

F. BAHRAMI, A. ARZANI, M. RAHIMMALEK
Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran

Terminal heat stress is one of the major constraints of cereal production. A two-year field investigation was performed to assess the response of Hordeum vulgare ssp. spontaneum genotypes to terminal heat stress using gas-exchange parameters, photosystem efficiency, proline accumulation, cell membrane leakage, and grain yield traits. Results of analysis of variance revealed the significant effects of heat stress (E), genotype (G), and G × E on the studied traits. The results of linear regression analysis showed that yield loss was inversely correlated with the maximum quantum yield of PSII photochemistry (Fv/Fm) and chlorophyll content. Path-coefficient analysis revealed that high Chl contents were either directly related to the grain yield or indirectly through the higher net photosynthetic rate and higher Fv/Fm values under high temperatures at the reproductive growth stage. Overall, the adapted wild genotypes exhibited physiological mechanisms capable of sustainable maintaining their yield capacity and plasticity flow, which could be exploited by crossing with cultivated barley to introgress heat tolerance.

Additional key words: abiotic stress; climate changes; genetic diversity, high-temperature stress; photosynthetic capacity; physiology.

Received: January 16, 2018; Accepted: June 1, 2018; Prepublished online: December 5, 2018; Published: January 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
BAHRAMI, F., ARZANI, A., & RAHIMMALEK, M. (2019). Photosynthetic and yield performance of wild barley (Hordeum vulgare ssp. spontaneum) under terminal heat stress. Photosynthetica57(1), 9-17. doi: 10.32615/ps.2019.009
Download citation

Supplementary files

Download file1888 Table 1S.doc

File size: 102 kB

References

  1. Allakhverdiev S.I.: Recent progress in the studies of structure and function of Photosystem II. - J. Photoch. Photobio. B 104: 1-8, 2011. Go to original source...
  2. Allakhverdiev S.I., Klimov V.V., Carpentier R.: Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: Influence of a new phenolic compound. - Biochemistry 36: 4149-4154, 1997. Go to original source...
  3. Allakhverdiev S.I., Kreslavski V.D., Klimov V.V. et al.: Heat stress: an overview of molecular responses in photosynthesis. - Photosynth. Res. 98:541-550, 2008. Go to original source...
  4. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  5. Arzani A., Ashraf M.: Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. - Crit. Rev. Plant Sci. 35: 146-189, 2016. Go to original source...
  6. Barnabás B., Jager K., Fehér A.: The effect of drought and heat stress on reproductive processes in cereals. - Plant Cell Environ. 31: 11-38, 2008. Go to original source...
  7. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  8. Bita C.E., Gerats T.: Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. - Front. Plant Sci. 4: 273, 2013. Go to original source...
  9. Brestic M., ®ivčák M.: PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. - In: Rout G.R., Das A.B. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131. Springer, Dordrecht 2013. Go to original source...
  10. Brestic M., ®ivčák M., Kalaji H.M. et al.: Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. - Plant Physiol. Bioch. 57: 93-105, 2012. Go to original source...
  11. Brestic M., ®ivčák M., Kunderlikova K. et al.: High temperature specifically affects the photoprotective responses of chlorophyll b deficient wheat mutant lines. - Photosynth. Res. 130: 251-266, 2016. Go to original source...
  12. Dias A.S., Semedo J., Ramalho J.C. et al.: Bread and durum wheat under heat stress: A comparative study on the photosynthetic performance. - J. Agron. Crop Sci. 197: 50-56, 2011. Go to original source...
  13. Dhyani K., Ansari M.W., Rao Y.R. et al.: Comparative physiological response of wheat genotypes under terminal heat stress. - Plant Signal. Behav. 8: e24564, 2013. Go to original source...
  14. Driedonks N., Rieu I., Vriezen W.H.: Breeding for plant heat tolerance at vegetative and reproductive stages. - Plant Reprod. 29: 67-79, 2016. Go to original source...
  15. Dwivedi S.K., Basu S., Kumar S. et al.: Heat stress induced impairment of starch mobilization regulates pollen viability and grain yield in wheat: Study in Eastern Indo Gangetic Plains. - Field Crop. Res. 206: 106-114, 2017. Go to original source...
  16. Feng B., Liu P., Li G. S. et al.: Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. - J. Agron. Crop Sci. 200: 143-155, 2014. Go to original source...
  17. Gosavi G.U., Jadhav A.S., Gadakh S.R. et al.: Effect of heat stress on proline, chlorophyll content, heat shock proteins and antioxidant enzyme activity in sorghum (Sorghum bicolor) at seedlings stage. - Indian J. Biotechnol. 13: 356-363, 2014.
  18. Gupta N.K., Agarwal S., Agarwal V.P. et al.: Effect of short-term heat stress on growth, physiology and antioxidative defense system in wheat seedlings. - Acta Physiol. Plant. 35: 1837-1842, 2013. Go to original source...
  19. Gupta N.K., Khan A., Maheshwari A. et al.: Effect of post anthesis high temperature stress on growth, physiology and antioxidative defense mechanisms in contrasting wheat genotypes. - Indian J. Plant Physiol. 20: 103-110, 2015. Go to original source...
  20. Harlan J.R., Zohary D.: Distribution of wild wheats and barley. - Science 153: 1074-1080, 1966. Go to original source...
  21. Horváth I., Glatz A., Nakamoto H. et al.: Heat shock response in photosynthetic organisms: membrane and lipid connections. - Prog. Lipid Res. 51: 208-220, 2012. Go to original source...
  22. Hübner S., Höffken M., Oren E. et al.: Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. - Mol. Ecol. 18: 1523-1536, 2009. Go to original source...
  23. Jedmowski C., Ashoub A., Momtaz O. et al.: Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley (Hordeum spontaneum). - J. Bot. 2015: 120868, 2015. Go to original source...
  24. Kalaji H., Bosa K., Ko¶cielniak J. et al.: Chlorophyll a fluorescence- a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). - Omics 15: 925-934, 2011. Go to original source...
  25. Klink K., Wiersma J.J., Crawford C.J. et al.: Impacts of temperature and precipitation variability in the Northern Plains of the United States and Canada on the productivity of spring barley and oat. - Int. J. Climatol. 34: 2805-2818, 2014. Go to original source...
  26. Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. - Biochem. Soc. T. 11: 591-592, 1983. Go to original source...
  27. Oukarroum A., Madidi S.E., Strasser R.J.: Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP. - Plant Physiol. Bioch. 105: 102-108, 2016. Go to original source...
  28. Ortiz R., Braun H.J., Crossa J. et al.: Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). - Genet. Resour. Crop Evol. 55: 1095-1140, 2008. Go to original source...
  29. Rezaei M., Arzani A., Sayed-Tabatabaei B.E.: Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and their synthetic hexaploid wheat derivates influenced by meiotic restitution and heat stress. - J. Genet. 89: 401-407, 2010. Go to original source...
  30. Roháček K., Soukupová J., Barták M.: Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. - In: Schoefs B. (ed.): Plant Cell Compartments - Selected Topics. Pp. 64-66. Research Signpost, Trivandrum 2008.
  31. Saha P., Sade N., Arzani A. et al. Effects of abiotic stress on physiological plasticity and water use of Setaria viridis (L.). - Plant Sci. 251: 128-138, 2016. Go to original source...
  32. Sairam R.K.: Effect of moisture stress on physiological activities of two contrasting wheat genotypes. - Indian J. Exp. Biol. 31: 551-553, 1994.
  33. Sarkar J., Chakraborty B., Chakraborty U.: Temperature stress induced antioxidative and biochemical changes in wheat (Triticum aestivum L.) cultivars. - J. Plant Stress Physiol. 2: 22-30, 2016. Go to original source...
  34. SAS/STAT User's Guide, Version 9.3 SAS Inst. Inc. Cary, NC 2011.
  35. Schauberger B., Archontoulis S., Arneth A.: Consistent negative response of US crops to high temperatures in observations and crop models. - Nat. Commun. 8: 13931, 2017. Go to original source...
  36. Sharkey T.D., Zhang R.: High temperature effects on electron and proton circuits of photosynthesis. - J. Integr. Plant Biol. 52: 712-722, 2010. Go to original source...
  37. Sharma D.K., Andersen S.B., Ottosen C.O. et al.: Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. - Funct. Plant Biol. 39: 936-947, 2012. Go to original source...
  38. Sharma D.K., Andersen S.B., Ottosen C.O. et al.: Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. - Physiol. Plantarum 153: 284-298, 2015. Go to original source...
  39. Shi P., Zhu Y., Tang L. et al.: Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. - Environ. Exp. Bot. 132: 28-41, 2016. Go to original source...
  40. Thormann L., Reeves P., Reilley A. et al.: Geography of genetic structure in barley wild relative Hordeum vulgare subsp. spontaneum in Jordan. - PLoS ONE, 11: e160745, 2016. Go to original source...
  41. Truong H.A., Jeong C.Y., Lee W.J. et al.: Evaluation of a rapid method for screening heat stress tolerance using three Korean wheat (Triticum aestivum L.) cultivars. - J. Agric. Food Chem. 65: 5589-5597, 2017. Go to original source...
  42. Wahid A., Gelani S., Ashraf M. et al.: Heat tolerance in plants: An overview. - Environ. Exp. Bot. 61: 199-223, 2007. Go to original source...
  43. Wang X., Dinler B.S., Vignjevic M. et al.: Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. - Plant Sci. 230: 33-50, 2015. Go to original source...
  44. Yeilaghi H., Arzani A., Ghaderian M. et al.: Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. - Food Chem. 130: 618-625, 2012. Go to original source...