Photosynthetica 2019, 57(1):209-216 | DOI: 10.32615/ps.2019.019

Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast

A. RASTOGI1, M. ZIVCAK2, D.K. TRIPATHI3, S. YADAV4, H.M. KALAJI5,6
1 Department of Meteorology, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland
2 Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
3 Amity Institute of Organic Agriculture (AIOA)Amity University, Noida Sector 125, Noida, Uttar Pradesh- 201313, India
4 Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
5 Institute of Technology and Life Sciences (ITP), Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
6 White Hill Company, ¯urawia 71/3 ,15-540 Bia³ystok, Poland

Silver nanoparticles (AgNPs) are used in several industries and their continuous release into environment can damage the ecosystem. Our study observed the impact of two concentrations of AgNPs (1 and 5 mM) on wheat seedlings. In this study, the treatment of AgNPs was found to have a significant impact on growth parameters, such as root and shoot length of wheat seedlings, in addition to that biochemical parameters, such as activity of catalase, glutathione, flavonoid, and chlorophyll concentrations, were also affected. AgNPs apparently suppressed the photosynthetic activity of the seedlings, with a clear destruction of photosystems at 5 mM concentration. The result also indicated an improper regulation of PSI electron transport, resulting in a damage to chloroplast structure, including photosystem itself. Our study presents a mechanism of the AgNPs action of on photosynthetic processes in plants.

Additional key words: antioxidants; chlorophyll fluorescence; JIP test.

Received: March 4, 2018; Accepted: July 19, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
RASTOGI, A., ZIVCAK, M., TRIPATHI, D.K., YADAV, S., & KALAJI, H.M. (2019). Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica57(1), 209-216. doi: 10.32615/ps.2019.019
Download citation

Supplementary files

Download file1908 Supporting_information.docx

File size: 1.91 MB

References

  1. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  2. Belava V.N., Panyuta O.O., Yakovleva G.M. et al.: The effect of silver and copper nanoparticles on the wheat-Pseudocercosporella herpotrichoides pathosystem. - Nanoscale Res. Lett. 12: 250, 2017. Go to original source...
  3. Boxall P., Purcell J., Wright P.: Human resource management: scope, analysis and significance. - In: Boxall P., Purcell J., Wright P. (ed.): The Oxford Handbook of Human Resource Management. Pp. 1-18. Oxford University Press, Oxford 2007. Go to original source...
  4. Brestic M., Zivcak M., Kunderlikova K. et al.: Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. - Photosynth. Res. 125: 151-166, 2015 Go to original source...
  5. Brestic M., Zivcak M., Kunderlikova K., Allakhverdiev S.I.: High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. - Photosynth. Res. 130: 251-266, 2016. Go to original source...
  6. Bukhov N.G., Wiese C., Neimanis S., Heber U.: Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. - Photosynth. Res. 59: 81-93, 1999. Go to original source...
  7. Chen L.S., Cheng L.: Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh.) leaves than in fruit peel. - Photosynthetica 47: 112-120, 2009. Go to original source...
  8. Dietz K-J., Herth S.: Plant nanotoxicology. - Trends Plant Sci. 16: 582-589, 2011. Go to original source...
  9. Dimkpa C.O., McLean J.E., Martineau N. et al.: Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. - Environ. Sci. Technol. 47: 1082-1090, 2013. Go to original source...
  10. El-Temsah Y.S., Joner E.J.: Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. - Chemosphere 89: 76-82, 2012. Go to original source...
  11. Grieco M., Tikkanen M., Paakkarinen V. et al.: Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light. - Plant Physiol. 160: 1896-1910, 2012. Go to original source...
  12. Gruyer N., Dorais M., Bastien C. et al.: Interaction between silver nanoparticles and plant growth. - In: Son J.E., Lee I.B., Oh M.M. (ed.): International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant. Pp. 795-800. ISHS Acta Horticulturae, Jeju, Korea 2014. Go to original source...
  13. Hawthorne J., Musante C., Sinha S.K., White J.C.: Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. - Int. J. Phytoremediat. 14: 429-442, 2012. Go to original source...
  14. Hossain Z., Mustafa G., Komatsu S.: Plant responses to nanoparticle stress. - Int. J. Mol. Sci. 16: 26644-26653, 2015. Go to original source...
  15. Jasim B., Thomas R., Mathew J., Radhakrishnan E.K.: Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenumgraecum L.). - Saudi Pharm. J. 25: 443-447, 2017. Go to original source...
  16. Jiang H.S., Qiu X.N., Li G.B. et al.: Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. - Environ. Toxicol. Chem. 33: 1398-1405, 2014. Go to original source...
  17. Joliot P., Johnson G.N.: Regulation of cyclic and linear electron flow in higher plants. - P. Natl. Acad. Sci. USA 108: 13317-13322, 2011. Go to original source...
  18. Kalaji H.M., Rastogi A., ®ivèák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  19. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  20. Khaydarov R.R., Khaydarov R.A., Gapurova O. et al.: Antimicrobial effects of silver nanoparticles synthesized by an electrochemical method. - In Reithmaier J.P., Petkov P., Kulisch W., Popov C. (ed.): Nanostructured Material for Advanced Technological Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Pp. 215-218. Springer, Dordrecht 2009. Go to original source...
  21. Kurepa J., Paunesku T., Vogt S. et al.: Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. - Nano Lett. 10: 2296-2302, 2010. Go to original source...
  22. Mirzajani F., Askari H., Hamzelou S. et al.: Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. - Ecotoxicol. Environ. Safe. 88: 48-54, 2013. Go to original source...
  23. Navarro E., Piccapietra F., Wagner B. et al.: Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. - Environ. Sci. Technol. 42: 8959-8964, 2008. Go to original source...
  24. Nishiyama Y., Allakhverdiev S.I., Murata N.: A new paradigm for the action of reactiv e oxygen species in the photoinhibition of photosystem II. - BBA- Bioenergetics. 1757: 742-749, 2006. Go to original source...
  25. Oukarroum A., Barhoumi L., Pirastru L., Dewez D.: Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. - Environ. Toxicol. Chem. 32: 902-907, 2013. Go to original source...
  26. Pallavi, Mehta C.M., Srivastava R. et al.: Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. - 3 Biotech. 6: 254, 2016. Go to original source...
  27. Perreault F., Samadani M., Dewez D.: Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. - Nanotoxicology. 8: 374-382, 2014. Go to original source...
  28. Pokhrel L.R., Dubey B.: Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. - Sci. Total Environ. 452-453: 321-332, 2013. Go to original source...
  29. Powles S.B.: Photoinhibition of photosynthesis induced by visible light. - Annu. Rev. Plant Physio. 35: 15-44, 1984. Go to original source...
  30. Qian H., Peng X., Han X. et al.: Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. - J. Environ. Sci.-China 25: 1947-1955, 2013. Go to original source...
  31. Rai M., Yadav A., Gade A.: Silver nanoparticles as a new gene-ration of antimicrobials. - Biotechnol. Adv. 27: 76-83, 2009. Go to original source...
  32. Rastogi A., Zivcak M., Sytar O. et al.: Impact of metal and metal oxide nanoparticles on plant: A critical review. - Front. Chem. 5: 78, 2017. Go to original source...
  33. Santos C.S.C., Gabriel B., Blanchy M. et al.: Industrial applications of nanoparticles - A prospective overview. - Mater. Today-Proc. 2: 456-465, 2015. Go to original source...
  34. Schulz E., Tohge T., Zuther E. et al.: Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. - Sci. Rep. 6: 34027, 2016. Go to original source...
  35. Sonoike K.: Photoinhibition of photosystem I: Its physiological significance in the chilling sensitivity of plants. - Plant Cell Physiol. 37: 239-247, 1996. Go to original source...
  36. Srivastava A., Strasser R.J., Govindjee: Greening of peas: parallel measurements of 77K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission and P700*. - Photosynthetica 37: 365-392, 1999. Go to original source...
  37. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP-test. - In: Mathi P. (ed.): Photosynthesis: from Light to Biosphere. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  38. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simul-taneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - Biochim. Biophys. Acta 1797: 1313-1326, 2010. Go to original source...
  39. Strasser R.J., Tsimilli-Michael M., Dangre D., Rai M.: Biophysical phenomics reveals functional building blocks of plants system biology: a case study for evaluation of the impast of Mycorrhization with Piriformospora indica. - In: Varma A., Oelmüller R. (ed.): Advanced Techniques in Soil Biology. Pp. 319-338. Springer, Dordrecht 2004. Go to original source...
  40. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  41. Strasser B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transient. - Photosynth. Res. 52: 147-155, 1997. Go to original source...
  42. Sytar O., Bruckova K., Hunkova E. et al.: The application of multiplex fluorimetric sensor for the analysis of flavonoids content in the medicinal herbs family Asteraceae, Lamiaceae, Rosaceae. - Biol. Res. 48: 5, 2015. Go to original source...
  43. Takagi D., Takumi S., Hashiguchi M. et al.: Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. - Plant Physiol. 171: 1626-1634, 2016. Go to original source...
  44. Tiwari A., Mamedov F., Grieco M. et al.: Photodamage of iron-sulphur clusters in photosystem I induces non-photochemical energy dissipation. - Nat. Plants 2: 16035, 2016. Go to original source...
  45. Tripathi D.K., Singh S., Singh S. et al.: Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. - Plant Physiol. Bioch. 110: 167-177, 2017. Go to original source...
  46. Vass I.: Molecular mechanisms of photodamage in the Photosystem II complex. - BBA-Bioenergetics 1817: 209-217, 2012. Go to original source...
  47. Vinkoviæ T., Novák O., Strnad M. et al.: Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. - Environ. Res. 156: 10-18, 2017. Go to original source...
  48. Wijnhoven S.W.P., Peijnenburg W.J.G.M., Herberts C.A. et al.: Nano-silver - A review of available data and knowledge gaps in human and environmental risk assessment. - Nanotoxicology 3: 109-138, 2009. Go to original source...
  49. Yin L., Colman B.P., McGill B.M. et al.: Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plans. - PLoS ONE 7: e47674, 2012. Go to original source...
  50. Zhang R., Cruz J.A., Kramer D.M. et al.: Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. - Plant Cell Environ. 32: 1538-1547, 2009. Go to original source...
  51. Zivcak M., Brestic M., Kunderlikova K. et al.: Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. - Photosynth. Res. 126: 449-463, 2015. Go to original source...
  52. Zivcak M., Brückova K., Sytar O. et al.: Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio. - Planta 245: 1215-1229, 2017. Go to original source...
  53. Zuverza-Mena N., Armendariz R., Peralta-Videa J.R., Gardea-Torresdey J.L.: Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. - Front Plant Sci. 7: 90, 2016. Go to original source...