Photosynthetica 2019, 57(2):627-639 | DOI: 10.32615/ps.2019.043

Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress

M. UMAR1, Z. UDDIN2, Z.S. SIDDIQUI1
1 Stress Physiology Phenomic Centre, Department of Botany, University of Karachi, 75270 Karachi, Pakistan
2 Department of Physics, University of Karachi, 75270 Karachi, Pakistan

Response of photosynthetic apparatus in some sunflower cultivars, i.e., S.28111, Hysun-33, Hysun-39, and SF0049, to salt, drought, and combined stresses were studied. The combined stress caused severe damage to photosynthetic apparatus as compared to single stress. The maximum quantum yield of PSII, phenomenological fluxes, plastoquinone pool size, performance indexes, and driving force of absorption were greatly affected by the combined stress. Among the cultivars, the combined stress produced synergistic effect (greater damage) in Hysun-33 and cross-tolerance (lesser damage) in S.28111. Similarly, concerning the ion imbalance, S.28111 and SF0049 showed lower Na+ and Cl- concentrations with lesser electrolyte leakage as compared to Hysun-33 and Hysun-39 under salt and combined stress. Results revealed that the disturbance in photosynthetic performance could be easily determined using JIP test by measuring chlorophyll a fluorescence. This information can be useful for the screening of oil-seed crop plants having better photosynthetic performance under salinized and desertified conditions.

Additional key words: electron transport rate; malondialdehyde; nonphotochemical quenching; OJIP transient.

Received: July 5, 2018; Accepted: February 6, 2019; Prepublished online: April 29, 2019; Published: May 16, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
UMAR, M., UDDIN, Z., & SIDDIQUI, Z.S. (2019). Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. Photosynthetica57(2), 627-639. doi: 10.32615/ps.2019.043
Download citation

References

  1. Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A. et al.: Plant responses to salt stress: Adaptive mechanisms. - Agronomy 7: 18, 2017. Go to original source...
  2. Asada K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. - Annu. Rev. Plant Phys. 50: 601-639, 1999. Go to original source...
  3. B±ba W., Kalaji H.M., Kompała-B±ba A., Goltsev V.: Accli-matization of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion. - PLoS ONE 11: e0156201, 2016. Go to original source...
  4. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  5. Carmak I., Horst W.J.: Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). - Physiol. Plantarum 83: 463-468, 1991. Go to original source...
  6. Ceppi M.G., Oukarroum A., Çiçek N. et al.: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. - Physiol. Plantarum 144: 277-288, 2012. Go to original source...
  7. D±browski P., Baczewska A.H., Pawlu¶kiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass. - J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  8. D±browski P., Kalaji M.H., Baczewska A.H. et al.: Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. - J. Lumin. 183: 322-333, 2017. Go to original source...
  9. Duncan D.B.: Multiple range and multiple F-test. - Biometrics 11: 1-42, 1955. Go to original source...
  10. Gao Y., Lu Y., Wu M.Q. et al.: Ability to remove Na+ and retain K+ correlates with salt tolerance in two maize inbred lines seedlings. - Front. Plant Sci. 7: 1716, 2016. Go to original source...
  11. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  12. Goltsev V., Kalaji M.H., Paunov M. et al.: Using variable chlorophyll fluorescence for evaluation of physiological state photosynthetic apparatus plants. - Rus. J. Plant Physl+ 63: 869-893, 2016. Go to original source...
  13. Gu M.F., Li N., Shao T.Y. et al.: Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. - Plant Soil Environ. 62: 314-320, 2016. Go to original source...
  14. Iqbal N., Ashraf M., Ashraf M.Y.: Glycinebetaine, an osmolyte of interest to improve water stress tolerance in sunflower (Helianthus annuus L.): water relations and yield. - S. Afr. J. Bot. 74: 274-281, 2008. Go to original source...
  15. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011. Go to original source...
  16. Kalaji H.M., Rastogi A., ®ivčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  17. Kan X., Ren J., Chen T. et al.: Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. - Environ. Exp. Bot. 140: 56-64, 2017. Go to original source...
  18. Koyro H.W., Hussain T., Huchzermeyer B., Khan M.A.: Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. - Environ. Exp. Bot. 91: 22-29, 2013. Go to original source...
  19. Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. - Annu. Rev. Plant Phys. 42: 313-349, 1991. Go to original source...
  20. Kwon T.R., Siddiqui Z.S., Harris P.J.C.: Effect of supplemental Ca++ on ion accumulation, transport and plant growth of salt sensitive Brassica rapa landraces. - J. Plant Nutr. 32: 644-667, 2009. Go to original source...
  21. Lutts S., Kinet J.M., Bouharmont J.: NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. - Ann. Bot 78: 389-398, 1996. Go to original source...
  22. Maxwell K., Johnson G.N.: Chlorophyll fluorescence: a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  23. Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluo-rescence study revealing effects of high salt stress on Photosystem II in wheat leaves. - Plant Physiol. Bioch. 48: 16-20, 2010. Go to original source...
  24. Murkowski A.: Effects of some stress factors on chlorophyll luminescence in the photosynthetic apparatus of crop plants. Habilitation thesis. - Acta Agrophys. 61: 3-158, 2002. [In Polish with English summary]
  25. Netondo G.W., Onyango J.C., Beck E.: Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. - Crop Sci. 44: 806-811, 2004. Go to original source...
  26. Nxele X., Klein A., Ndimba B.K.: Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. - S. Afr. J. Bot. 108: 261-266, 2017. Go to original source...
  27. Oukarroum A., Bussotti F., Goltsev V., Kalaji H.M.: Corre-lation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba plants under salt stress. - Environ. Exp. Bot. 109: 80-88, 2015. Go to original source...
  28. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem-I-content and photosystem II thermotolerance analysed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  29. Papageorgiou G.C., Govindjee: Chlorophyll a Fluorescence. A Sig- nature of Photosynthesis. Pp. 818. Springer, Dordrecht 2004. Go to original source...
  30. Saensee K., Machikowa T., Muangsan N.: Comparative perfor-mance of sunflower synthetic varieties under drought stress. - Int. J. Agric. Biol. 14: 929-934, 2012.
  31. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  32. Strasser R.J., Srivastava A., Tsimilli-Michael M.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence. A Signature of Photosynthesis. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  33. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluo-rescence transient as a tool to characterize and screen photosynthetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor and Francis, London 2000.
  34. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  35. Sun Z.W., Ren L.K., Fan J.W.: Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. - Plant Soil Environ. 11: 515-521, 2016. Go to original source...
  36. Takahashi S., Murata N.: Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. - BBA-Bioenergetics 1708: 352-361, 2005. Go to original source...
  37. Tang X., Mu X., Shao H. et al.: Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. - Crit. Rev. Biotechnol. 35: 425-437, 2015. Go to original source...
  38. Umar M., Siddiqui Z.: Physiological performance of sunflower genotypes under combined salt and drought stress environment. - Acta Bot. Croat. 77: 36-44, 2018. Go to original source...
  39. Vieira Santos C.L., Campos A., Azevedo H., Caldeira G.: In situ and in vitro senescence induced by KCl stress: Nutritional imbalance, lipid peroxidation and antioxidant metabolism. - J. Exp. Bot. 52: 351-360, 2001. Go to original source...
  40. Wang W., Vinocur B., Altman A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. - Planta 218: 1-14, 2003. Go to original source...
  41. Wu X.X., Ding H.D., Chen J.L. et al.: Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. - Afr. J. Biotechnol. 9: 7837-7846, 2010. Go to original source...
  42. Yan K., Shao H., Shao C.: Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. - Acta Physiol. Plant. 35: 2867-2878, 2013. Go to original source...
  43. Zaghdoudi M., Msilini N., Govindachary S. et al.: Inhibition of photosystems I and II activities in salt stress-exposed Fenugreek (Trigonella foenum graecum). - J. Photoch. Photobio. B 105: 14-20, 2011. Go to original source...
  44. Zivcak M., Brestic M., Balatova Z.: Photosynthetic electron trans- port and specific photoprotective responses in wheat leaves under drought stress. - Photosynth. Res. 117: 529-546, 2013. Go to original source...